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Abstract—This report considers the general problem of
autonomous exploration, in which a mobile robot seeks to build
a map of its environment as quickly as possible. Often, this is
formulated as an information maximization problem and solved
using Monte Carlo methods. In this report, we introduce a novel
reformulation in which the optimization variable is not a single
trajectory, but rather the distribution over all trajectories.
Finally, a more sample-efficient version of this idea is presented.
The main contribution of this work is a theoretical guarantee
that all three methods are equivalent in their simplest forms,
in the sense that all will yield the same information-optimal
trajectory.

I. INTRODUCTION

Autonomous exploration is a well-studied problem in the
robotics literature, and in practice it is often a central compo-
nent in many industrial applications. There are a number of
common approaches to formulating the exploration problem,
and even more approaches to solving the problem efficiently.
Despite this variety of techniques, a significant stumbling
block persists: computational intractability and the curse of
dimensionality.

This work approaches the problem from the perspective
of information theory, as a modified instance of the channel
coding problem. A sequence of algebraic manipulations
allows us to prove one of our main results: that the noiseless
modified channel coding problem reduces to the current state
of the art. We begin to address the issue of computational
intractability by proposing a robust version of the channel
coding problem which allows us to reduce sample complex-
ity. Our second main result is that the simplest incarnation
of this robust problem reduces to the initial problem.

Section II provides a brief overview of the current state
of the art in this area. We formulate the general problem as
a variant of the classical channel coding problem in Sec. III.
Section III-C presents a recurring example — the radiation
detection problem — which we will treat as a toy problem to
illustrate our approach. Section IV presents our first attempt
to solve the modified channel coding problem, and proves
our first main result. Section V introduces a robust version
of the previous result, with the intent of improving sampling
complexity. Section VI describes a software implementation
of these ideas. Section VII presents an empirical validation
of our earlier results, and Sec. VIII offers some final remarks
on the utility of these methods and suggests steps for future
work.
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II. RELATED WORK

There are at least three major approaches to solving the
exploration problem: Markov decision processes (MDPs),
frontier exploration, and information maximization.

MDPs actually predate much of the modern work on
exploration, and are in fact more general. As most commonly
formulated, e.g. in [7], MDPs model the robot’s state as a
Markov process, where the state is taken to be a unique
representation of all relevant information for a particular
task. At each time step, the robot may transition from
its current state ¢ to another state j (both in state space
>)) and thereby collect some reward r;;. The solution to
the MDP is then taken to be a policy > — X
that maps the current state to the optimal next state such
that the time-discounted expected reward is maximized for
all time. There exist dynamic programming approaches to
solving this problem: unfortunately they are known to be
computationally intractable for large enough (though still
rather small) problems.

In practice, greedy methods are often used in place of
an MDP, among them frontier exploration and information
maximization. Frontier exploration arose early in the robotics
literature as an algorithm to guide robots toward unexplored
territory, as in [8]. The idea is to keep track of which areas of
space are explored and unexplored, and to move toward the
nearest unexplored area. Once the unexplored area is within
the robot’s field of view (for whatever sensor it is using), it
acquires measurements of the space. Over time, the explored
area grows and the unexplored area shrinks, yielding a trivial
proof of convergence.

Unfortunately, frontier exploration is often a poor heuristic
in three dimensions due to the prevalence of small, partially-
occluded regions. However, information maximization ap-
proaches tend to be more robust to such distractions, as they
are specifically designed to balance the information gained
from exploring occluded areas with that from exploring
larger regions that may be further away, or even from re-
exploring territory that may have been hastily passed over.
For example, in [2] robot actions are chosen at each time
step to maximize an information metric defined over its
environment representation and its internal state estimate,
using a finite, receding horizon. In recent years, this approach
has become dominant in the robotics literature: for a more
modern implementation, see [3].

Unfortunately, information maximization over a receding
time horizon suffers two major difficulties. First, as with



most greedy algorithms, it is not optimal in general (al-
though convergence was shown in [5]). Second, as the time
horizon over which planning occurs increases, the number
of feasible trajectories increases exponentially which can
make the problem computationally intractable. In practice,
the first issue is completely ignored, and the second is often
mitigated by choosing trajectories from a small subset of
feasible trajectories (again, leading to sub-optimality).

In this work, we examine the information maximization
approach from the perspective of channel coding, and lever-
age the structure of that problem to begin to design a more
efficient exploration algorithm.

III. PROBLEM FORMULATION

Figure 1 provides a block-level overview of the au-
tonomous exploration problem. At every time step, the robot
is required to choose some trajectory X, based on its current
understanding of the “map” m, which encodes the robot’s
knowledge of the true map M. This trajectory results in
a (possibly noisy) “measurement” Z of the environment.
These measurements are then accumulated by the robot
and incorporated into an improved map estimate. In the
information maximization formulation of exploration, the
objective of the robot in choosing each successive trajectory
is to gather information as quickly as possible, so that,
ideally, m — M in as few steps as possible.
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Fig. 1. Block diagram of the robot exploration problem. A robot is required
to choose its next trajectory based on its current map estimate.

In the information maximization approach described in
Sec. II, it is common to formulate the problem of choosing
an optimal trajectory z* as follows:

¥ =argmax I(Z; M|X = x) (1)

i.e. that the optimal trajectory is the one which, on average,
results in a measurement Z which reveals the most informa-
tion about the map M.

A. Through the Lens of Channel Coding

9%

The “encoder,” “channel,” and “decoder” blocks in Fig. 1
are intended to evoke the classical channel coding problem,
in which the goal is to encode some data source in such a
way that the data can be recovered despite being corrupted
by a noisy transmission process. When the noise statistics —
in our case, the conditional measurement distribution pzx
for a fixed known map M — are known, the so-called channel
capacity C is given by Shannon’s channel coding theorem:

C=maxI(Z;X) (2)
pPx

Moreover, there exists an efficient method, the Blahut-
Arimoto algorithm, for solving Eq. 2 — which is a convex
optimization problem — efficiently.

Notice that to achieve the channel capacity, we are re-
quired to find a probability distribution over trajectories X,
rather than a single, optimal trajectory. Intuitively, it seems
plausible that solving this convex relaxation may be more
efficient than solving the integer program in Eq. 1.

The natural way to apply the channel coding idea to Eq.
1 is as follows:

px = argmax I(Z; M|X) 3)
px

where we choose the input distribution px such that the
average information revealed by the resulting sequence of
measurements Z is maximized.

B. Preliminaries

Before proceeding, we state several major assumptions
about the nature of the trajectories, measurements, and maps
in this problem.

Assumption 1: (Discreteness) Throughout this work, it is
assumed that all quantities (trajectories, measurements, and
maps) are discrete. Formally, we denote thisby X € X', Z €
Z,M € M where the sets X, Z, M are countable.

Assumption 2: (Finiteness) For computational tractability,
we also assume that the sizes of these sets are finite and
“small” — by which we mean that enumerating them is not a
significant computational burden. Note that this requirement
is not necessary for any of the theoretical results; it is only
required for an efficient implementation in practice.

Assumption 3: (Determinism) We assume that measure-
ments Z are deterministic, i.e. given a fixed trajectory x
and map m, the corresponding measurement Z is no longer
random. That is, Z = z(x, m) for some well defined function
2: XXM — Z.

C. Toy Problem: Radiation Mapping

The preceding formulation is intentionally abstract. To
be more explicit, consider the following instance of the
exploration problem, shown in Fig. 2.

A robot is tasked with finding k point sources of radiation
{si}%_, known to lie somewhere on a N x P grid, i.e.
s; € Fy x Fp. It has a sensor which counts the number of
sources in its #-degree field of view. At each time step, it can
move from its current position on the grid to any diagonal
or adjacent grid cell, and rotate by +6,, where 6 is a small
angular step size. The goal is to choose a distribution over
short sequences of such movements, i.e. over trajectories
X, such that the resulting sequence of measurements 7
reveals the most information about the underlying map M
as specified in Eq. 3.

IV. FINDING THE BEST DISTRIBUTION

Our first main result is that the channel coding approach
always yields the same optimal trajectory as the classical
information maximization approach:



Fig. 2. Diagram of radiation detection scenario with k = 7 sources, two
of which are in the blue-shaded field of view.

Theorem 1: The solution p% to Eq. 3 is a delta function,
and all mass is concentrated on the solution x* to Eq. 1.

We devote the remainder of this section to proving Theo-
rem 1.

A. Proof of Theorem 1

Begin by expanding the objective function in Eq. 3, as
follows:

I(Z;M|X)=H(M|X)—-H(M|Z,X) 4)
=H(Z|X)-H(Z|M,X) 5
=H(Z|X)-0 (6)
=- pr(m) ZPZ|X(Z|33) log pz|x (2]2)

x z (7)

Note that H(Z|M,X) = 0 in Eq. 6 because we have

assumed in Assumption 3 that a sequence of measurements

is completely determined by a trajectory and a map.
Observe that I(Z; M|X) is linear in px, i.e. if we define

c(r) = — ZPZ|X(Z|$) log pz|x (z]z) ¥

then we can rewrite Eq. 3 as follows:
px = argmaxc’px 9)
pPx

Further, the only constraint on the optimization problem
in Eq. 9 is that px be a probabilty distribution on &, i.e.
that

px >0and 1Tpy =1 (10)

Thus, Eq. 9 is a linear program (LP), which implies that
its solution is a vertex of the feasible set defined in Eq. 10,
i.e. a vertex of the probability simplex over X. Explicitly,

P’ (z) = 0 for all x except the optimal one, at which p%, = 1.
Had the feasible set been only the set of vertices, the solution
would be the same. Optimizing over the set of vertices is
equivalent to choosing the single best trajectory in Eq. 1,
which proves Theorem 1.

V. REDUCING SAMPLE COMPLEXITY

In practice, the vector ¢ must be computed at each time
step in order to set up the LP of Eq. 9. This is done by first
estimating the distribution pz x with the empirical distribu-
tion generated by Monte Carlo sampling, and then plugging
into the formula in Eq. 8. Unfortunately, estimating pz|x
accurately requires lots of samples: the sample complexity
scales at least as fast as card (X') x card (M) x card (Z) (the
total support size of all variables). Even in the toy radiation
detection problem, this can become prohibitive.

Suppose, however, that we draw only n samples from the
true joint distribution pz x a7, where n is smaller than the
coarse scaling law above. The resulting estimate pz x will
converge to the true distribution pz x as n — oo. For
any finite n, the error pz x — pz|x results in an error 7 in
computing c, i.e. n = ¢ — ¢. If we had an upper bound on
some norm of 7, we might formulate the following “robust”
version of Eq. 9:

(1)

py = argmaxmin(é 4 1) px
Px n

subject to ||| < e

where the robot is now trying to choose the best distribution
over trajectories such that, for the worst case sampling-
induced error n the resulting mutual information is maxi-
mized.

If we take the norm on 7 to be the /., norm — or
equivalently, if we have a bound on |c(z) — é(z)| for all
z — then our second main result states that the solution to
Eq. 11 again coincides with the solution to Eq. 1.

Theorem 2: The solution to Eq. 11 where the bound on
7 is taken to be in ¢, coincides with the solution to the
non-robust version in Eq. 9 and by Theorem 1 to that of Eq.
1.

The proof of Theorem 2 is given in Sec. V-B. First,
however, in Sec. V-A we show how to obtain an upper bound
€ on ||n]le as a function of the number of samples n. In
Sec. V-C we consider a small adjustment to Eq. 11 in which
Theorem 2 does not apply.

A. Toward a Bound on Sampling Error

We state the following lemma without proof (the proof
may be found in [4]):

Lemma 3: If p = pz x—, is estimated from n [ID samples
of the true distribution, with the estimate denoted p, then

]P’{D(]ﬁ”p) < 5} >1— 27n5+card(2) log,(n+1) (12)
Lemma 3 provides an upper bound on the relative entropy
between the estimated distribution p and the true distribution
p, that holds with high probability for sufficiently large n.



Further application of Pinsker’s inequality yields a bound on
the ¢; deviation:

1og2( )Hp pl; < D(pllp) <

Continuing, the Fannes-Audenaert inequality [6] yields:

13)

n(x) = |H(p) — H(p)| (14)
< Hp_2p||1log2(k)+H2 (IIp—Qle) 15)

P
S 10g2<k)6l + HQ(él), (S/ = m (16)

where Hs is the binary entropy function and § < 1. This

yields the following ¢, bound on 7:
Mllo < € € =1logy(k)d" + Ha(d") (17)

Thus, we have derived a reasonably tight upper bound on
the ¢, norm of estimation error 7.

B. Proof of Theorem 2

We prove Theorem 2 with a short sequence of manipula-
tions that reduce Eq. 11 to Eq. 9:

py =argmax min (¢4 1) px (13)

Px n:{nflec<e

=argmaxé px + min  nlpx (19)
24 n:{Inlleo<e

:argrr;axé Px —e-sgn(pX)TpX (20)
X

= argn;axéTpx — ellpxh 2D
X

=argmaxélpy — e (22)
px

= argmax & pyx (23)
px

where the reduction in Eq. 22 holds because px is a
probability vector, which implies that its elements sum to
unity.

We have shown that the solution to Eq. 11 coincides with
that to Eq. 9 when estimation error 7 is bounded in the ¢,
sense. This suffices to prove the theorem.

C. Loosening the Bound on Sampling Error

One may interpret Theorem 2 optimistically or pessimisti-
cally. On the one hand, we have shown that, even accounting
for an adversarial sampling error, the information-optimal
distribution over trajectories remains the same delta function
as in the literature. This should give us some measure of
comfort, that we can do no better than choosing the best
trajectory (indeed, it may be why the state of the art is so
good!). On the other hand, we may expect that choosing
a non-degenerate distribution over trajectories — in a sense,
probabilistically interpolating between trajectories — might be
advantageous given that our estimates of information gain are
imprecise. Theorem 2 tells us that, under a box uncertainty
model, this is not so.

In this section, we consider another natural uncertainty
model which arises when we loosen the bound in Eq. 17.

Since [[nlloc < Iinllss we know that {n: ]z < c} C
{n : Nl < €}, which implies the following inequality:

(é+mn)"px
24

i.e. the loose /5 bound results is a comparatively optimistic
predictor of information gain.

Regardless, we can compute the value of px at optimum,
following a similar line of reasoning as in Sec. V-B:

max min (¢é+n)T pX>max min
px m:l|nll2<e Px 7m:|nlloc <€

pi =argmax min (¢4 1) py (25)
PX Hnllz<
= argmaxc px + min 7 pX (26)
24 n:lnll2<e
L
=argmax él py — € - 27
px Ip ||2
= arg max ¢"px —ellpx|l2 (28)
X

Eq. 28 is a second order cone program (SOCP), and may
be solved efficiently with an off-the-shelf commercial solver.
Effectively, the ¢, penalization causes the solution p% to
move away from the vertices of the feasible set, balancing the
contributions from different trajectories. This is illustrated in
2D in Fig. 3, where the solution to the original LP (the red
dot) is shifted a small amount along the probability simplex
toward the other vertex.
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Fig. 3. Illustration of the £5-constrained robust problem from Eq. 28. For
the vector ¢ shown, the solution to the original LP is given by the red dot.
Introduction of the ¢2-penalization, visualized by the blue gradient field,
causes the optimum to move upward along the probability simplex to the
location marked by the red star.

As mentioned above, such probabilistic interpolation —
choosing a trajectory at random according to the distribution
Px — is an intuitively desirable property; it may be viewed
as “hedging” across different possible values of estimation
error 7).

VI. IMPLEMENTATION

We provide open-source C++ and Python implementa-
tions of the LP-based formulation in Eq. 9 and the SOCP-
based formulation in Eq. 28 to solve the toy radiation



detection problem: https://dfridovi.github.io/
exploration/.

Although the statement of the radiation detection problem
given in Sec. III-C is fairly simple and straightforward, there
is one non-trivial step which has yet to be discussed. That
is, how to fuse measurements Z into a posterior distribution
on map M at each time step; effectively, how to close the
loop in Fig. 1. For a detailed treatment of this topic, see the
appendix.

VII. EMPIRICAL RESULTS

Figure 4 shows the results of an empirical comparison
between the linear information maximization of Eq. 9, its
{5-robust counterpart Eq. 28, and a simple random walk
explorer, where the grid size is 10 x 10 and there are k = 2
sources. The LP- and SOCP-based explorers are optimizing
over trajectories of length one, using n = 1000 Monte Carlo
samples to generate ¢, with e = 0.1. Results are based on
1000 random initializations.
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Fig. 4. Empirical exploration rates for the LP-based non-robust explorer
of Eq. 9, the SOCP-based robust explorer of Eq. 28, and a random walk
(RW) on a 10 x 10 grid with £ = 2 sources. Error bars are at +1
standard deviation. Note that the information maximization algorithms are
more efficient on average than a random walk (which was expected), while
there is little difference between robust and non-robust explorers. In larger
problems, we expect the difference to be more striking.

As shown in Fig. 4, even in this extremely small version
of the problem, the information maximization algorithms
outperform the baseline. This pattern should become even
more pronounced in more complicated problems. Moreover,
although we do not observe a significant difference between
robust and non-robust information maximizers here, we
speculate that in larger problems the robust version may
outperform the non-robust version.

VIII. REMARKS AND FUTURE DIRECTIONS

Three remarks are in order, each of which concludes with
a suggestion for future work.

Remark 1: (Noiseless measurements) We have assumed
throughout this work that measurements were noiseless (see
Assumption 3). Although this is almost never true in practical
problems, it was necessary for the original convex informa-
tion maximization problem in Eq. 3 to reduce to a linear
objective, which was crucial to the proof of both of our main
results. If we allowed noise in the measurements, then the
simplification in Eq. 6 (H(Z|M, X) = 0) would no longer
hold. However, for any particular noise model, it should be
possible to compute (or estimate from samples) that condi-
tional entropy term, and include it in the computation. The
resulting problem could be solved using the Blahut-Arimoto
algorithm, for example. Regardless, the noisy case would not
reduce to the state of the art information maximization of Eq.
1. It would be useful to examine this case in detail in future
work.

Remark 2: (Conservativeness of bounds) The bounds in
Sec. V-A, though in general tight, may not be always be
useful or meaningful. For example, the bound in Lemma
3 suggests that, for £ = 2 sources and 6 = 0.01, at least
n =~ 10* samples are required for each valid trajectory!
Considering three-step trajectories of the sort described in
Sec. III-C, this works out to ~ 2 x 108 samples total —
which is clearly impractical for real-time decision making.
As suggested in Sec. V-C, one way to sidestep this issue is to
artificially loosen the bound. Still, there may be other, more
parsimonious solutions which we have not considered.

Remark 3: (Direct computation of mutual information) A
particularly promising approach to reducing the computa-
tional complexity of these methods is to replace the Monte
Carlo estimation process of Sec. V with a direct computation
based on a priori knowledge of the sensor and noise models.
We focused on Monte Carlo sampling for two reasons: (1)
it is common in practice, and (2) it is very simple to extend
to new and more complicated sensor and noise models. An
interesting direction for future work will be to combine these
methods efficiently in more complicated planning problems.

IX. CONCLUSION

In this report, we have presented a channel coding-inspired
reformulation of the information maximization approach to
robot trajectory planning. Under the assumption of determin-
istic measurements — or equivalently, that all channel noise
is due to an unknown environment — we showed in Theorem
1 that this new formulation coincides with the state of the
art. Additionally, we considered how this approach might
be made robust to errors induced by decreasing the sample
complexity. In Theorem 2, we showed that a simple (.,
bounding scheme again coincided with the original approach.
Finally, we proposed an artificially loose ¢5 bound which
exhibits an interesting “interpolation” property, presented
empirical results, and discussed several shortcomings and
directions for future work.
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APPENDIX

Here, we describe the approach taken to fusing successive
simulated radiation measurements together efficiently into a
posterior distribution over maps: pys|x,z. Naive application
of Bayes’ rule reveals:

Pm,x,z
PM|X,Zz = ——— (29)
pPx,z
_ DM, x (30)
bx

under the noiseless measurement assumption. Unfortunately,
this is little help: the joint distribution pys,x is just as hard
to write down as the conditional pysx 7.

As a simple alternative, we model the distribution of M
as a function f supported on the grid where, at each grid
cell, the function value is the probability that a source lies
in that cell, independent of all other cells. More precisely,
f:FN X]Fp — [0,1] and

par(m = {(i1, j1), -, (ik, k) })
= I rG.9 [ 1-£G23)

(i,j)eEM (i,5)¢m
Under this assumption, it is relatively straightforward to
enforce consistency across the observed data. At each time
step t, we record the set V; of grid cells that were in the
field of view, and also the corresponding measurement 2.
We then solve for the function f; which is consistent with the
measurements, and with the constraint that the total number

of sources on the grid is k:

€1V

2

fo=agminy” (- 3 5.0
Tt (i,4)EVr
2

+ A k=D f(i ) (32)
(4.3)

Note that we have introduced a regularization constant A >

0 and scaled it by ¢. In practice, we set A = 1 so that the

terms are equally weighted. This is a linear least squares

problem with implicit bounds constraints (f(z,7) € [0,1]),

and we solve it using the Google Ceres solver [1]. Although
this model is not fully general (for instance, it cannot model
multiple sources at the same location), it is sufficient for our
toy problem and is not so different from the data structures
used in more complicated problems.
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