
0 0.5 1 1.5 2 2.5 3 3.5
R

0

0.2

0.4

0.6

0.8

1

D
(R
)

Rate Distortion function for Unit Variance Gaussian

Fully Decentralized Policies for Multi-Agent Systems: An Information Theoretic Approach 
Roel Dobbe*, David Fridovich-Keil*, and Claire J. Tomlin  

UC Berkeley Hybrid Systems Lab - {dobbe,dfk}@eecs.berkeley.edu

Decentralized Optimal Control Graphical Model Representation  

Application of Rate Distortion

Communication Strategy

Case: Optimal Power Flow (OPF)

Rate Distortion Theory

If mutual information                         then for distortion 
function              the minimum  
average distortion            sol- 
ves a convex program.

• We address voltage variability in an electric grid                                       
.                   due to intermittent renewable energy.

• Optimize reactive power outputs                   of a set 
of distributed energy resources (DERs),    .

• Adhere to physics of power flow and constraints 
due to energy capacity and safety.

• Many critical infrastructures, such as electric grids, 
or transportation networks, require decentralized 
policies to efficiently implement control schemes.

• Control is often hampered by partial observability 
and lack of coordination/communication. 

• Rather than solving a central optimization in real-
time, treat agent  ’s optimal action problem as a 
random variable       that can be fully decentralized

•       depends on the global state variables  
                             , i.e. we consider               . 

• View decentralization as a compression problem, 
by letting a policy only depend on     .

• Apply classical results from information theory to 
analyze performance limits based on fundamental 
limits of compression, which is well formulated as 
an instance of rate distortion theory.

Each agent’s optimal  
control     depends on all 
state variables    but the 
control applied in practice 
can only depend on local 
information     .

In distributed control, rate     is effectively specified by 
the information contained in local state variables. We 
formulate the problem as: 

Suppose controller    is allowed to observe k other 
state variables     . 

    is called the “rate” of information transfer, and  
gives a lower bound on average distortion.

D(R) = min
p(X|Y )

E[d(X,Y )],

s.t. I(X;Y )  R
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Data Processing Inequality
Suppose                     form a Markov chain. Then the 
following constraint holds:

I(X;Z)  I(X;Y )

In decentralized optimal control, the DPI applies 
between controls and state variables:

I(ûi;u
⇤
j )  I(xi;u

⇤
j ) and I(ûi; ûj)  I(xi;xj)

• Constraints depend upon the problem structure. 
• Mutual information must be estimated from data.
• Problem is convex in function space, but not 

necessarily convex for particular parameterizations.
• Solution is non-prescriptive, i.e. does not specify 

precisely how to perform minimum-distortion 
decoding (control).

For the Gaussian case with squared error distortion, 
there is a closed form solution for       and a 
corresponding optimal decoder: 
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i

= E[u⇤
i

] +
⇢

u

⇤
i xi�u

⇤
i

�

xi

(x
i

� E[x
i

])

Theorem
Setting     as follows minimizes      for any distortion   : 

Si = argmax

S
I(u

⇤
i ;xi, {xj : j 2 S}) : |S| = k

The proof follows from the monotonicity of          .

Squared correlation coefficients.

Consider     an information source and     a recon-
struction after transmission over a noisy channel. 

Figure adopted from Shannon 1948. • Collect data set of offline simulations and optima    . 
• Generalize      for all DER using an interpretable 

stepwise regression model                               . 
• Use communication strategy to improve 

performance with additional variables     .
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