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Abstract— We present a novel approach to control design for
nonlinear systems, which leverages reinforcement learning tech-
niques to learn a linearizing controller for a physical plant with
unknown dynamics. Feedback linearization is a technique from
nonlinear control which renders the input-output dynamics of
a nonlinear plant linear under application of an appropriate
feedback controller. Once a linearizing controller has been
constructed, desired output trajectories for the nonlinear plant
can be tracked using a variety of linear control techniques.
A single learned policy then serves to track arbitrary desired
reference signals provided by a higher-level planner. We present
theoretical results which provide conditions under which the
learning problem has a unique solution which exactly linearizes
the plant. We demonstrate the performance of our approach
on two simulated problems and a physical robotic platform.
For the simulated environments, we observe that the learned
feedback linearizing policies can achieve arbitrary tracking of
reference trajectories for a fully actuated double pendulum and
a 14 dimensional quadrotor. In hardware, we demonstrate that
our approach significantly improves tracking performance on
a 7-DOF Baxter robot after less than two hours of training.

I. INTRODUCTION

Recent progress in the reinforcement learning (RL) com-
munity [1H5] has renewed a debate on the utility and role of
models in controlling uncertain robotic systems. In this pa-
per, we present a unifying viewpoint in which RL algorithms
provide a mechanism for computing a reference tracking
controller. This controller may then be used modularly in
a variety of hierarchical control and planning schemes.

Specifically, this paper focuses on tracking desired output
trajectories for a special class of nonlinear systems using a
technique from geometric control theory known as feedback
linearization. Feedback linearization renders the input-output
behavior of a nonlinear system linear via application of an
appropriately chosen control law. Desired output trajectories
for the plant can then be generated using a linear reference
model and tracked using well-established techniques from
linear systems theory, such as LQR [6]] or linear MPC [7].

However, the primary drawback of feedback linearization
is that it requires accurate knowledge of the plant’s dynamics.
Many real-world robotic systems display dynamics with
parameters that may be difficult to identify and nonlinearities
which may be impractical to incorporate into a system
dynamics model. While there have been extensive efforts
to develop robust forms of feedback linearization using
combinations of feedback and adaptation [8H15]], current
methods in the literature make strong structural assumptions
about the plant’s nonlinearities. This is highlighted in the
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Fig. 1: Schematic diagram of our framework. By learning an appropriate
feedback linearizing controller, we render an initially unknown nonlinear
system (with state x, output y, and input w) linear in an auxiliary input, v. In
order to track desired output trajectories ¢, v may follow a linear feedback
control design, e.g., LQR. We demonstrate our approach in a variety of
systems, including a Baxter robot arm (pictured).

case of multiple-input multiple-output nonlinear systems, for
which the above references either assume that there is no
coupling between the system inputs, or that a highly struc-
tured parametric representation of this coupling is available.

In sharp contrast to these methods, we propose a frame-
work for constructing a linearizing controller for a plant with
unknown dynamics using policy optimization algorithms
from reinforcement learning. Our approach requires no a pri-
ori information about the structure of the coupling between
the inputs and outputs of the plant. While our approach can
naturally incorporate information from a nominal dynamics
model into the learning process, it can also be applied when
nothing but the structure of the linear reference model is
known. Specifically, our approach begins by constructing
a linearizing controller for the nominal dynamics model
(if available). Then, it augments this nominal controller
with an arbitrarily structured parametric component. The
parameters of this learned component are trained using a
reinforcement signal which encourages actions which better
match the desired input-output behaviour described by the
liner reference model. We demonstrate that for linearly pa-
rameterized controllers, the resulting optimization problem is
convex, meaning that globally optimal solutions can be found
reliably. Additionally, we present conditions which guarantee
that an exact linearizing control law can be recovered.

We evaluate our framework in simulation, where it suc-
cessfully learns to control a double pendulum (4 dimensional
state) and a quadrotor (14 dimensional state) along arbitrary
reference trajectories. We also demonstrate our method on a
Baxter robot arm. In each case, a single learned linearizing
control law can accomplish multiple tasks and track multiple
reference signals. We report significant improvements in
tracking performance within one hour of training time.
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II. RELATED WORK

Most approaches for constructing linearizing control laws
for plants with a priori unknown dynamics are based on
linear adaptive control theory [8]]. The earliest approaches
employing indirect adaptive control generally assume that a
parameterized model of the plant’s true dynamics is avail-
able [8H12]]. The model parameters are then updated online
deterministically using data collected from the plant, and the
refined dynamics model yields an improved linearizing con-
trol law. When accompanied by an appropriate (exponentially
stabilizing) feedback law, such methods can be shown to
track desired output signals asymptotically on the plant. A
large body of subsequent work [[16H18]] has extended these
results to more general classes of function approximators
(i.e., neural networks) to approximate the systems dynamics
and improve the linearizing control law. Recent efforts have
also investigated the use of nonparametric methods for
estimating the plant dynamics [[13H15]].

Frameworks employing direct adaptive control [|19,[20] di-
rectly parameterize the linearizing controller for the system.
These methods also propose deterministic online update laws
and feedback control architecture which ensure asymptotic
tracking of desired reference signals. As discussed above,
each of these methods makes strong assumptions about the
coupling of the input-output dynamics of the system. A
notable exception to the above literature is [21]], where a
temporal differencing scheme is used to learn a linearizing
controller for single-input single-output nonlinear systems.
We build on this contribution by developing a framework for
learning linearizing controllers for multiple-input multiple-
output systems and by providing theoretical conditions under
which an exact linearizing control law can be constructed.

III. FEEDBACK LINEARIZATION

This section outlines how to compute input-output lin-
earizing controllers for a known dynamics model. We refer
the reader to [22], [23]] for a more thorough introduction. In
this paper, we consider square control affine systems of the
form

&= f(z) + g(x)u

ey

y = h(x),
where x € R” is the state, u € RY is the input and y € R?
is the output. The mappings f: R™ — R", g: R" — R"*¢
and h: R™ — R are each assumed to be smooth. We restrict
our attention to a compact subset D C R™ of the state space
containing the origin.

A. Single-input single-output systems

We begin by introducing feedback linearization for single-
input, single-output (SISO) systems (i.e., ¢ = 1). In order
to construct this control law, we take time derivatives of
y = h(z) until the input v appears, and then invert the
relationship to enforce linear input-output behavior. We begin

by examining the first time derivative of the output:

i = @) (1) + glau) @
dh dh
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Here the terms Ly¢h(x) and Lgh(x) are known as Lie
derivatives [22]], and capture the rate of change of y = h(x)
along the vector fields f and g, respectively. In the case
that Lyh(z) # 0 for each z € D, we can exactly control
y = h(z) on D. In particular, consider the control

1

u(z,v) = m(—th(x) +v), “)
which when applied to the system exactly ‘cancels out’ the
nonlinear portion of the differential equation and enforces
the linear relationship y = v. However, it may be the case
that L,h(x) = 0 (that is, the input does not directly affect
the first derivative of the output), in which case the control
law @[) will be undefined. In general, we can differentiate y
multiple times, until the input shows up in one of its higher
order derivatives. Assuming that the input does not appear
the first ¥ —1 times we differentiate the output, the ~y-th time
derivative of y will be of the form

y) = LYh(z) + LgL}_lh(m)u %)

Here, L} and LgL'}_lh(x) are higher order Lie derivatives.
More information on how to compute these nonlinear func-
tions can be found in [22, Chapter 9]. If LgL}flh(x) #0
for each z € D then the control law

1

u(r,v) = ———s——
(@,0) LyL} 'h(z)

(= Lih(z) +v) (6)

enforces the relationship y(*) = v. v is referred to as the
relative degree of the nonlinear system.

B. Multiple-input multiple-output systems

Next, we consider (square) multiple-input, multiple-output
(MIMO) systems, i.e., ¢ > 1. Due to space constraints, we
leave a full development of this case to [22, Chapter 9],
but outline the main ideas here. As in the SISO case, we
differentiate each of the output channels until at least one
input appears. Let 7, be the number of times we need to
differentiate y; (the j-th entry of y) for an input to appear.
We then obtain an input-output relationship of the form :

[yg’“), .

The square matrix A(x) is referred to as the decoupling
matrix and b(x) is know as the drift term. If A(x) is
nonsingular on D then we observe that the control law

u(z,v) = A7 (z)(=b(z) + v) (8)

Ly = b(x) + A(z)u 7

where v € R? yields the decoupled linear system

[y1/17y;27"'7y3q]T: [’Ul,’Ug,...,’Uq]T7 (9)



where vy, is the k-th entry of v. We refer to (1,72, .- .,7q)
as the vector relative degree of the system. The decoupled
dynamics (@) can be compactly represented with the LTI
system

gr = A'r‘fr + B,

which we will hereafter refer to as the reference
model. Here, we have collected the states &, =
(Y1, 915 vsee s ¥ e Ygs---,yq") and constructed A,
and B, to represent the dynamics of (T0).

(10)

IV. DIRECTLY LEARNING A LINEARIZING CONTROLLER

In this work, we will examine how to construct a lin-
earizing controller for a physical plant of the form (I) with
unknown dynamics

&= fp(x) + gp(x)u (1D
y = hp(z)

starting from the linearizing controller for the model system
&= fm(x) 4+ gm(z)u (12)

Yy= hm(m)

which represents our "best guess" for the true dynamics of
the plant. We make the following standard assumption:
Assumption 1: The model system (12) and plant (TT)) both
have the same vector relative degree 77", 73",...,7," on
some compact set D C R".
With this assumption in place, we know that there exists
linearizing controllers of the form

13)
(14)

U (2, 0) = B () + am(2)V
up(,v) = Bp(x) + ap(z)v
for the physical model and plant, respectively. We can

construct u,, using the techniques discussed above, but the
terms in u, are unknown. However, we do know that

By(&) = Bu(w) + AB(x)
0p(7) = () + Aa(z)

15)
(16)

for some continuous functions AS and Aa. We construct
parameterized estimates for these functions:

Aﬂ(l') ~ 591 (lL’), Aa(x) ~ g, (ZL’)

Here, 6; € ©1 C Rfl and 0y € Oy C RE2 are parameters
to be trained by running experiments on the plant. We will
assume that ©; and ©5 are convex compact sets, and we
will frequently abbreviate § = (61,62) € ©1 x Oy := O.
We assume that Sy, and («y,) are continuous in z and
continuously differentiable in #; and 6, respectively.
Altogether, for a given 6 = (61,62) € © our estimate for
the controller which exactly linearizes the plant is given by

ag(2,v) = [Bm (@) + o, ()] + [om (@) + ap, (2)]0 (18)

In the case where no prior information about the dynamics of
the plant is available (other than its vector relative degree),
we simply remove u,, from uy the above expression. Next
we define a conceptual optimization problem which selects

a7

the parameters for the learned controller which, in a sense
we will make precise shortly, best linearize the plant. We
then describe a practical variant of this problem which is
more amenable to real-world implementation.

A. Conceptual problem
From Section [[1I| we know that the input-output dynamics
of the plant are of the form

Y7 = bp(z) + Ap(z)u

where the terms b, and A, are unknown to us, and
we have written the highest order derivatives as y? =
(', .. uat, . ya®)T to simplify notation. Under appli-
cation of 4y the dynamics given by:

19)

w:%w+&w(mmmwmm+

[am(z) + ag, (x)}v) (20)

Letting Wy(x,v) equal the right-hand side of the above
expression, we would ideally like to find 6* € © such that
for each x € D and v € V, Wy«(z,v) =~ v for each x € D
and v € R™. That is, we would ideally like our feedback
linearizing controller to accurately control the highest order
derivatives of our output. However, since the dynamics of
the plant are unknown to us, we do not know the terms in
mg(x,v), and thus we cannot directly solve for 6*. Instead,
we define the pointwise loss /: R™ x R? x RFf1+K:z

Z(I7U70) = ||U—W9($,’U)||27 (21)

which provides a measure of how well the learned controller
Uy linearizes the plant at the state « when the virtual input v
is applied. We then specify a probability distribution X over
R™ with support D, which we use to model our preference
for having an accurate linearizing controller at different
points in the state space. We let V' be the uniform distribution
over the set {v € R?: |jv]| < 1} and then define the weighted
loss

L(Q) = EQJNX’UNV f(.’L’,U,G) (22)

and then define our optimal choice of the parameters for
the learned controller by solving the following optimization
problem:

min L(6)

0coe 23)

Although we do not know the terms in L, we can query
this function by applying wg(z,v) at various points in the
statespace and recording the resulting value of y”. Thus zero-
th order optimization methods can be used to solve (23). In
the following section, we formulate an approximation to this
problem which is more directly amenable to policy gradient
reinforcement learning algorithms.

Our insistence that X is supported on D and that V
uniformly excites all directions in R? is analogous to the
persistence of excitation conditions commonly found in the
adaptive control literature [§]], and is crucial for the following
parameter convergence results.
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Fig. 2: Figures A) and B) display the trajectories from two distinct tracking tasks. In each plot *Ground Truth’ is the trajectory resulting from the feedback
linearization of the true dynamics. The task in A) is a simple swing-up task with a constant reference signal. The task in B) is to follow a sinusoidal
desired sinusoidal joint angles. The desired signal for the blue trajectory is given by mcos(t), and the desired signal red joint is —mwsin(t).

Lemma 1: Suppose that there exists 8* € © such that
G+ (x,v) = up(z,v) for each x € D and v € V. Then 0* is
a globally optimal solution to (23).

Proof: Note that if ug~(z,v) = uy(x,v) for each
x € X and v € V then L(A) = 0. Moreover, we clearly
have L(#) > 0 for each § € ©. Thus, 8* must be a global
minimizer of the optimization (23). [

However, (23)) is generally a nonconvex optimization prob-
lem which means we cannot reliably find its globally optimal
solution. Thus, we seek conditions on 3y, and g, which
ensure that is actually a convex optimization problem.
In particular, we now consider the case where 5y and ay
take the form

K K>
691 (CL‘) = Zekﬁk(x) and Qpy (LL') = Zﬁiak(x) (24)
k=1 k=1

where {8}, and {ay};2, are nonlinear features, which
are each assumed to be continuous functions. The proof of
the following result can be found in the Appendix.

Lemma 2: Assume that 8y, and «p, are of the form (24),

and that the sets {8}, and {aj}r>?, are each linearly
independent. Then (23) is strongly convex.
Taken together, the above Lemmas immediately imply the
following result, which provides conditions under which we
can reliably recover the true linearizing controller for the
plant by solving (23).

Theorem 1: Suppose that for some 0* € © we have
up(x,v) = dg-(x,v) for each z € D and v € R™, and
assume that the hypothesis of Lemma [2| holds. Then 6* is
the unique global (and local) minimizer of (23).

B. Reinforcement learning for practical implementation

To be able to solve (23)) efficiently in practical settings we
now cast it as a canonical reinforcement learning problem
[24]. This allows us to leverage off-the-shelf implementations
of on-policy reinforcement learning algorithms to efficiently
learn feedback linearizing policies.

Indeed, if we take 7y (x, v) to be our policy which takes in
both the current state  and an auxiliary input v and returns
the control action g, and take the reward for a given state
to be R(x,v,ug) = {(x,v,0), the above problem can be

written as:

min E, . x ooV we 2
0o zo~X,v~V,w~N(0,02)

T
/O R(z(7), v(r), ug(r))dr

&= f(x) +g(x)(mo(2,v) + wr)

Where X is the initial state distribution, V' is a distribution
over auxiliary inputs, 7" > 0 is the time horizon of the
problem, and w is additive zero-mean noise term to make
the effect of the policy random.

A discretized version of this problem can be solved with
on-policy reinforcement learning algorithms. Indeed, for a
given fixed value of 0, we can sample N rollouts of length
T, and use sequences of the state, output of the policy, and
rewards to construct estimates of the gradient of J with
respect to #. This can be done with any method including,
but not restricted to REINFORCE [24] with baseline, Deep
Deterministic Policy Gradients [25]], Proximal Policy Opti-
mization [26], or Trust Region Policy Optimization [27].

subject to:

V. EXAMPLES

We now use our approach to learn feedback linearizing
policies for three different systems to highlight its versatility.
The first two examples are trained in silico while the third
is in hardware. In all cases, the input to the parameterized
policy replaces all angles with their sine and cosine, and does
not include Cartesian positions.

A. Simulations

1) Double pendulum with polynomial policies: We first
test our approach on a fully actuated double pendulum with
state © = [0, 02, w1, ws]T, output y = [0y, 602, where 6,
and 6, represent the angles of the two joints, with angular
rates wy and wy respectively. The system has two inputs u;
and wuo that control the torque at both joints. Although the
system is relatively low dimensional and fully actuated, it is
highly nonlinear and can produce chaotic trajectories [28].

We train linearizing controllers for the double pendulum
in two cases where very poor prior information of the model
is available. In the first case, we assume that our estimates
for the mass and length of the pendulum arms are only %
of their true values. In the second case, we assume that no
prior information on the system’s dynamics is available, so
that our trained controller has 3,, = 0 and «,, = 0. In
both settings we parameterize the learned portion of our
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Fig. 3: 14D quadrotor examples for two learned policies. In the first row, we show (in red) the performance of a LQR controller calculated from the desired
linear system in conjunction with a feedback linearizing controller based on an the initial (incorrect) model of the dynamics. The second row depicts the
tracking performance after the learning process. The first task is a figure-eight, and the second is a corkscrew maneuver. In both maneuvers the quadrotor
also tracks an oscillating reference in the yaw angle. Our method successfully corrects the initial misspecification of the linearizing controller.

policies by linear combinations of second order polynomials
such that the reinforcement learning problem conforms to
the assumptions of Theorem [I] We use the REINFORCE
algorithm [24]], and baseline state-value estimates with the
average reward over all states. At each iteration (or epoch)
we collect 50 rollouts of 0.25 seconds each, and we train
for 2000 epochs. Figure 2] presents the resulting trajectories
for each learned controller. We do not plot the trajectories
generated by the nominal model based controllers, since in
both cases the initial controllers are unable to move the
pendulum arms more than a few degrees from the downwards
position. For each controller we observe improvement in
tracking ability even though a low order polynomial policy is
employed. In order to track the desired reference signals we
apply a linear feedback gain on the reference model which
is found by solving an infinite horizon LQR problem We
used a state penalty matrix of 30-diag(1, 1,0, 0) and control
penalty matrix of diag(1,1) to generate the feedback gain.

2) 14D quadrotor with neural network policies: Our
second simulation environment uses the quadrotor model
and feedback linearization controller proposed in [29]], which
makes use of dynamic extension [22]]. In particular, the states
for the model are (z,y,z,9,0,¢,&,9, 2,p,q,7,&,) where
z, y and z are the Cartesian coordinates of the quadrotor, and
1, 0 and ¢ represent the roll, pitch and yaw of the quadrotor,
respectively. The next six states represent the time derivatives
of these state: %(w,y,z,w,e,g@) = (4,9, %,p,q,r). Finally,
¢ and ( are the extra states obtained from the dynamic
extension procedure. The outputs for the model are the z,
y, z and 1) coordinates.

In Figure 3] we show the performance of two learned feed-
back linearizing policies on two different high-performance
reference tracking tasks. For the first learned policy, we
initialized the training with an incorrect prior model where
all the parameters of the model (mass and moments of
inertia) were scaled by a factor of 1/3. For the second
learned policy the parameters of the incorrect prior model
were scaled by 3/5. The policies were feed-forward neural
networks with tanh activations with 2 hidden layers of
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Fig. 4: Average rewards over the training epoch for three learned policies
initialized with prior models with different scalings on the parameters.

width 64. For each training epoch, 50 rollouts of length
25 were collected and the parameters were updated using
PPO. We trained both policies for 2500 epochs. As shown
in Figure [3] both prior models were unable to successfully
track the desired references for both tasks, leading to highly
unstable dynamics. The learned policies, on the other hand,
were able to achieve high quality tracking of both references.
For all trajectories a linear feedback gain was applied to
the reference model, by solving an LQR problem where
deviations in the position and yaw were penalized 20 times
more than the norm of the control.

Figure [3] also highlights how better prior models leads to
better performance of the learned policy. Figure 4] highlights
this trend through the learning curves of three policies ini-
tialized with prior models of decreasing quality. We observe
that worse initial models result in worse policy performance,
given the same network architecture and training time.

B. Robotic experiment: 7-DOF manipulator arm

We also evaluate our approach in hardware, on a 7-DOF
Baxter robot arm. The dynamics of this 14-dimensional
system are extremely coupled and nonlinear. Taking the 7
joint angles as output y, however, the system is input-output
linearizable with relative degree two. We use the system
measurements (i.e., masses, link lengths, etc.) provided with
Baxter’s pre-calibrated URDF [30] and the OROCOS Kine-
matics and Dynamics Library (KDL) [31] to compute a
nominal feedback linearizing control law.
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Fig. 5: Total ¢2 error on a set-point tracking task after 104 minutes of
training for the desired linear system is (dotted, green), the nominal feedback
linearizing controller (red), and our learned controller (blue).

This nominal controller suffers from several inaccuracies.
First, Baxter’s actuators are series-elastic, meaning that each
joint contains a torsion spring [32] which is unmodeled, and
the URDF itself may not be perfectly accurate. Second, the
OROCOS solver is numerical, which can lead to errors in
computing the decoupling matrix and drift term. Finally, our
control architecture is implemented in the Robot Operating
System [33]], which can lead to minor timing inconsistency.

We use the PPO algorithm to tune the parameters of a
128 x 2 neural network with tanh activations. The neural
network maps from the (sine-cosine augmented) 21 states
to 56 outputs (7 x 7 inverse decoupling matrix, 7 x 1 drift
term). For each training epoch, 1250 rollouts of one timestep
(0.05 s) each were collected. We trained for 100 epochs with
learning rate 3 x 10~%, which took 104 minutes. Figure
summarizes typical results on tracking a square wave ref-
erence trajectory for each joint angle with period 5 s. As
shown, the ideal linear system displays an exponential step
response and rapidly converges to each new setpoint. The
nominal feedback linearized model from OROCOS has sig-
nificant steady-state error. Our learned approach significantly
reduces, but does not eliminate, this error. We conjecture that
this remaining error is a sign that the (relatively small) neural
network may not be sufficiently expressive.

VI. CONCLUSION

In this paper, we introduced a framework for learning a
linearizing control law for a plant with a priori unknown
dynamics and no assumptions on the coupling between the
nonlinear components of the system. We provided theoretical
guarantees for conditions under which it is possible to learn
the exact linearizing controller. In more general settings, we
cast the learning of a feedback linearizing controller as an
on-policy reinforcement learning problem.

We validated our proposed approach on three problems.
We first showed that it was possible to learn a feedback
linearizing controller with no prior model to control a
highly nonlinear fully actuated double pendulum. Second, we
demonstrated that neural network-based feedback linearizing
policies could efficiently track arbitrary trajectories of a
high dimensional problem. We also empirically observed the
advantage of incorporating prior knowledge into the control
design. Finally we tested our approach in hardware on a

Baxter robot, where we observed that after 104 minutes of
training we saw a significant improvement in the tracking
error over the baseline. Together, these empirical results con-
firm the effectiveness of our approach as a general method
for designing high quality model reference controllers for
high-dimensional systems with unknown dynamics.

APPENDIX
A. Proof of Lemma
First, we rearrange (19) into the form

Yp = bp(x) + Ap(2) Bm (2) + Ap(z)am (z)v
K Ko
+ ) 0L A (@) Br(x) + Y R A (x)a(z)v (25)
=1 k=1

to separate out the portions that depend on 6. This can be
further condensed by putting y? = W(x,v) + W(z,v)0
where we set

W (z,v) = bp(x) + Ap(2) B () + Ap(x)am ()0

W(l’,’U) = Ap(x)[ﬁl(x)a s 75}(1 (1’), Al(l')’l},

ooy A, (7))
Letting ¢(z,v) = (v — W (z,v)), we can rewrite
U(z,v,0) = (c(z,v) — W (z, v)G)T(c(x, v) — W(a:,v)@)
= 0T W (2, 0)W (2,0)0 — 20W (, v)c(z, v)
+ c(z,v) T e(w,v)

From here we observe that L(0) = 0TWO + 0TF + d
where W = Epwx v W (z, v) "W (,v) is a positive semi-
definite matrix, F' = E,x yov W(x,v)c(ac,v) and d =
Ey~x o~y ¢(z,v)Te(z,v). Thus, recalling that © is assumed
to be a convex set, we see that (23 is a convex optimization
problem which will be strictly convex if, and only if, W
is positive definite. Letting wj: (z,v) — Ap(z)Bk(z) and
wi: (z,v) > Ap(x)ag(z)v, we see that W is nothing but
the Grammian of the set 2 = {w%, ey w}(l,w%, . ,w%}
on C(D x B,,R?%) with respect to an inner product which
is weighted by the distributions X and V. Thus, W will
be positive definite if and only if 2 is linearly independent
on C(D x B,,R?). For the sake of contradiction assume
that €2 is not linearly independent. Then there exists scalars

{c}g}izl and {c%}fjl such that foreachz € D andv € V

Kl KZ

1,1 2 2
Z cpwi(®,v) + Z cpwi(z,v) =0 (26)
k=1 k=1
Since we know that A,(x) is invertible for each « € D, this
statement is equivalent to

Kl K2

Z B () + Z ciag(r)v = 0. 27
k=1 k=1

holding for each z € D and v € V. However, it is not
difficult to see that this condition is ruled out in the case
that { 6k}kK:11 and {ak.}kK:Ql are linearly independent sets.
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