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Abstract— Many problems in robotics involve multiple de-
cision making agents. To operate efficiently in such settings,
a robot must reason about the impact of its decisions on
the behavior of other agents. Differential games offer an
expressive theoretical framework for formulating these types
of multi-agent problems. Unfortunately, most numerical so-
lution techniques scale poorly with state dimension and are
rarely used in real-time applications. For this reason, it is
common to predict the future decisions of other agents and
solve the resulting decoupled, i.e., single-agent, optimal control
problem. This decoupling neglects the underlying interactive
nature of the problem; however, efficient solution techniques
do exist for broad classes of optimal control problems. We
take inspiration from one such technique, the iterative linear-
quadratic regulator (ILQR), which solves repeated approxima-
tions with linear dynamics and quadratic costs. Similarly, our
proposed algorithm solves repeated linear-quadratic games. We
experimentally benchmark our algorithm in several examples
with a variety of initial conditions and show that the resulting
strategies exhibit complex interactive behavior. Our results
indicate that our algorithm converges reliably and runs in real-
time. In a three-player, 14-state simulated intersection problem,
our algorithm initially converges in < 0.25 s. Receding hori-
zon invocations converge in < 50ms in a hardware collision-
avoidance test.

I. INTRODUCTION

Many problems in robotics require an understanding of
how multiple intelligent agents interact. For example, in the
intersection depicted in Fig. 1, two cars and a pedestrian wish
to reach their respective goals without colliding or leaving
their lanes. Successfully navigating the intersection requires
either explicit, or perhaps implicit, coordination amongst the
agents. Often, these interactions are decoupled, with each
autonomous agent predicting the behavior of others and then
planning an appropriate response. This decoupling necessi-
tates strong predictive assumptions on how agents’ decisions
impact one another. Differential game theory provides a
principled formalism for expressing these types of multi-
agent decision making problems without requiring a priori
predictive assumptions.

Unfortunately, most classes of differential games have no
analytic solution, and many numerical techniques suffer from
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Fig. 1: Demonstration of the proposed algorithm for a three-player general-
sum game modeling an intersection. Two cars (red and green triangles)
navigate the intersection while a pedestrian (blue triangle) traverses a
crosswalk. Observe how both cars swerve slightly to avoid one another
and provide extra clearance to the pedestrian.

the so-called “curse of dimensionality” [1]. Numerical dy-
namic programming solutions for general nonlinear systems
have been studied extensively, though primarily in cases
with a priori known objectives and constraints which permit
offline computation, such as automated aerial refueling [2].
Approaches such as [3, 4] which separate offline game analy-
sis from online operation are promising. Still, scenarios with
more than two players remain extremely challenging, and the
practical restriction of solving games offline prevents them
from being widely used in many applications of interest, such
as autonomous driving.

To simplify matters, decision making problems for multi-
ple agents are often decoupled (see, e.g., [5–7]). For example,
the red car in Fig. 1 may wish to simplify its decision prob-
lem by predicting the future motion of the other agents and
plan reactively. This simplification reduces the differential
game to an optimal control problem, for which there often
exist efficient solution techniques. However, the decisions of
the other agents will depend upon what the red car chooses to
do. By ignoring this dependence, the red car is incapable of
discovering strategies which exploit the reactions of others,
and moreover, trusting in a nominal prediction—e.g., that the
pedestrian will get of the way—may lead to unsafe behavior.
A differential game formulation of this problem, by contrast,
explicitly accounts for the mutual dependence of all agents’
decisions.

We propose a novel local algorithm for recovering inter-
active strategies in a broad class of differential games. These
strategies qualitatively resemble local Nash equilibria, though
there are subtle differences. By solving the underlying game
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we account for the fundamental interactive nature of the
problem, and by seeking a local solution we avoid the curse
of dimensionality which arises when searching for global
Nash equilibria. Our algorithm builds upon the iterative
linear-quadratic regulator (ILQR) [8], a local method used
in smooth optimal control problems [9–11]. ILQR repeat-
edly refines an initial control strategy by efficiently solving
approximations with linear dynamics and quadratic costs.
Like linear-quadratic (LQ) optimal control problems, LQ
games also afford an efficient closed form solution [12]. Our
algorithm exploits this analytic solution to solve successive
LQ approximations, and thereby finds a local solution to the
original game in real-time. For example, our algorithm ini-
tially solves the three-player 14-state intersection scenario of
Fig. 1 in < 0.25 s, and receding horizon problems converge
in < 50 ms in a hardware collision-avoidance test.

II. BACKGROUND & RELATED WORK

A. General-sum games

Initially formulated in [13, 14], general-sum differen-
tial games generalize zero-sum games to model situa-
tions in which players have competing—but not necessar-
ily opposite—objectives. Like zero-sum games, general-sum
games are characterized by Hamilton-Jacobi equations [13]
in which all players’ Hamiltonians are coupled with one
other. Both zero-sum and general-sum games, and especially
games with many players, are generally difficult to solve
numerically. However, efficient methods do exist for solving
games with linear dynamics and quadratic costs, e.g. [12, 15].
Dockner et al. [16] also characterize classes of games which
admit tractable open loop, rather than feedback, solutions.

B. Approximation techniques

While general-sum games may be analyzed by solving
coupled Hamilton-Jacobi equations [13], doing so requires
both exponential time and computational memory. A number
of more tractable approximate solution techniques have been
proposed for zero-sum games, many of which require linear
system dynamics, e.g. [17–20], or decomposable dynamics
[21]. Approximate dynamic programming techniques such as
[22] are not restricted to linear dynamics or zero-sum set-
tings. Still, scalability to online, real-time operation remains
a challenge.

Iterative best response algorithms form another class of ap-
proximate methods for solving general-sum games. Here, in
each iteration every player solves (or approximately solves)
the optimal control problem that results from holding other
players’ strategies fixed. This reduction to a sequence of
optimal control problems is attractive; however, it can also
be computationally inefficient. Still recent work demonstrates
the effectiveness of iterative best response in lane changes
[4] and multi-vehicle racing [23].

Another similarly-motivated class of approximations in-
volves changing the information structure of the game. For
example, Chen et al. [24] solve a multi-player reach-avoid
game by pre-specifying an ordering amongst the players
and allowing earlier players to communicate their intended

strategies to later players. Zhou et al. [25] and Liu et al.
[26] operate in a similar setting, but solve for open-loop
conservative strategies.

C. Iterative linear-quadratic (LQ) methods

Iterative LQ approximation methods are increasingly com-
mon in the robotics and control communities [9–11, 27].
Our work builds directly upon the iterative linear-quadratic
regulator (ILQR) algorithm [8, 28].

At each iteration, ILQR simulates the full nonlinear system
trajectory, computes a discrete-time linear dynamics approx-
imation and quadratic cost approximation, and solves a LQR
subproblem to generate the next control strategy iterate.
While structurally similar to ILQR, our approach solves a
LQ game at each iteration instead of a LQR problem. This
core idea is related to the sequential linear-quadratic method
of [29, 30], which is restricted to the two-player zero-sum
context. In this paper, we show that LQ approximations can
be applied in N -player, general-sum games. In addition, we
experimentally characterize the quality of solutions in several
case studies and demonstrate real-time operation.

III. PROBLEM FORMULATION

We consider a N -player finite horizon general-sum differ-
ential game characterized by nonlinear system dynamics

ẋ = f(t, x, u1:N ) , (1)

where x ∈ Rn is the state of the system, and ui ∈ Rmi , i ∈
[N ] ≡ {1, . . . , N} is the control input of player i, and
u1:N ≡ (u1, u2, . . . , uN ). Each player has a cost function Ji
defined as an integral of running costs gi. Ji is understood to
depend implicitly upon the state trajectory x(·), which itself
depends upon initial state x(0) and control signals u1:N (·):

Ji
(
u1:N (·)

)
,
∫ T

0

gi
(
t, x(t), u1:N (t)

)
dt,∀i ∈ [N ] . (2)

We shall presume that f is continuous in t and continu-
ously differentiable in {x, ui} uniformly in t. We shall also
require gi to be twice differentiable in {x, ui},∀t.

Ideally, we would like to find time-varying state feedback
control strategies γ∗i ∈ Γi for each player i which constitute
a global Nash equilibrium for the game defined by (1) and
(2). Here, the strategy space Γi for player i is the set of
measurable functions γi : [0, T ] × Rn → Rmi mapping
time and state to player i’s control input. Note that, in
this formulation, player i only observes the state of the
system at each time and is unaware of other players’ control
strategies. With a slight abuse of notation Ji(γ1; . . . ; γN ) ≡
Ji
(
γ1(·, x(·)), . . . , γN (·, x(·))

)
, the global Nash equilibrium

is defined as the set of strategies {γi} for which the following
inequalities hold (see, e.g., [12, Chapter 6]):

J∗i , Ji(γ
∗
1 ; . . . ; γ∗i−1; γ∗i ; γ∗i+1; . . . γ∗N )

≤ Ji(γ∗1 ; . . . ; γ∗i−1; γi; γ
∗
i+1; . . . γ∗N ),∀i ∈ [N ] .

(3)

In (3), the inequalities must hold for all γi ∈ Γi,∀i ∈
[N ]. Informally, a set of feedback strategies (γ∗1 , . . . , γ

∗
N )

is a global Nash equilibrium if no player has a unilateral
incentive to deviate from their current strategy.



Since finding a global Nash equilibrium is generally com-
putationally intractable, recent work in adversarial learning
[31] and motion planning [23, 32] consider local Nash
equilibria instead. Further, [23, 32] simplify the information
structure of the game and consider open loop, rather than
feedback, strategies. Local Nash equilibria are character-
ized similarly to (3), except that the inequalities may only
hold in a local neighborhood within the strategy space
[33, Definition 1]. In this paper, we shall seek a related
type of equilibrium, which we describe more precisely in
Section IV-B. Intuitively, we seek strategies which satisfy
the global Nash conditions (3) for the limit of a sequence of
local approximations to the game. Our experimental results
indicate that it does yield highly interactive strategies in a
variety of differential games.

IV. ITERATIVE LINEAR-QUADRATIC GAMES

We approach the N -player general-sum game with dynam-
ics (1) and costs (2) from the perspective of classical LQ
games. It is well known that Nash equilibrium strategies for
finite-horizon LQ games satisfy coupled Riccati differential
equations. These coupled Riccati equations may be derived
by substituting linear dynamics and quadratic running costs
into the generalized HJ equations [14] and analyzing the
first order necessary conditions of optimality for each player
[12, Chapter 6]. These coupled differential equations may
be solved approximately in discrete-time using dynamic
programming [12]. We will leverage the existence and com-
putational efficiency of this discrete-time LQ solution to
solve successive approximations to the original nonlinear
nonquadratic game.

A. Iterative LQ game algorithm

Our iterative LQ game approach proceeds in stages, as
summarized in Algorithm 1. We begin with an initial state
x(0) and initial feedback control strategies {γ0i } for each
player i, and integrate the system forward (line 3 of Al-
gorithm 1) to obtain the current trajectory iterate ξk ≡
{x̂(t), û1:N (t)}t∈[0,T ]. Next (line 4) we obtain a Jacobian
linearization of the dynamics f about trajectory ξk. At each
time t ∈ [0, T ] and for arbitrary states x(t) and controls ui(t)
we define deviations from this trajectory δx(t) = x(t)− x̂(t)
and δui(t) = ui(t) − ûi(t). Thus equipped, we compute a
continuous-time linear system approximation about ξk:

˙δx(t) ≈ A(t)δx(t) +
∑
i∈[N ]

Bi(t)δui(t), (4)

where A(t) is the Jacobian Dx̂f
(
t, x̂(t), û1:N (t)

)
and Bi(t)

is likewise Dûif
(
t, x̂(t), û1:N (t)

)
.

We also obtain a quadratic approximation to the running
cost gi for each player i (see line 5 of Algorithm 1)

gi
(
t, x(t), u1:N (t)

)
≈

gi
(
t, x̂(t), û1:N (t)

)
+

1

2
δx(t)T (Qi(t)δx(t) + 2li(t)) +

1

2

∑
j∈[N ]

δuj(t)
T (Rij(t)δuj(t) + 2rij(t)) , (5)

Algorithm 1: Iterative LQ Games
Input: initial state x(0), control strategies {γ0i }i∈[N ],

time horizon T , running costs {gi}i∈[N ]

Output: converged control strategies {γ∗i }i∈[N ]

1 for iteration k = 1, 2, . . . do
2 ξk ≡ {x̂(t), û1:N (t)}t∈[0,t] ←
3 getTrajectory

(
x(0), {γk−1i }

)
;

4 {A(t), Bi(t)} ← linearizeDynamics
(
ξk
)
;

5 {li(t), Qi(t), rij(t), Rij(t)} ←
quadraticizeCost

(
ξk
)
;

6 {γ̃ki } ← solveLQGame
(

7 {A(t), Bi(t), li(t), Qi(t), rij(t), Rij(t)}
)
;

8 {γki } ← stepToward
(
{γk−1i , γ̃ki }

)
;

9 if converged then
10 return {γki }

where vector li(t) is the gradient Dx̂gi, rij is Dûj
gi, and

matrices Qi and Rij are Hessians D2
x̂x̂gi and D2

ûj ûj
gi,

respectively. We neglect mixed partials D2
ûj ûk

gi and D2
x̂ûj

gi
as they rarely appear in cost structures of practical interest,
although they could be incorporated if needed.

Thus, we have constructed a finite-horizon continuous-
time LQ game, which may be solved via coupled Riccati
differential equations [12, 34]. This results in a new set
of candidate feedback strategies {γ̃ki } which constitute a
feedback (global) Nash equilibrium of the LQ game [12]. In
fact, these feedback strategies are affine maps of the form:

γ̃ki
(
t, x(t)

)
= ûi(t)− P k

i (t)δx(t)− αk
i (t) , (6)

with gains P k
i (t) ∈ Rmi×n and affine terms αk

i (t) ∈ Rmi .
However, we find that choosing γki = γ̃ki often causes

Algorithm 1 to diverge because the trajectory resulting from
{γ̃i} is far enough from the current trajectory iterate ξk that
the dynamics linearizations (Algorithm 1, line 4) and cost
quadraticizations (line 5) no longer hold. As in ILQR [35],
to improve convergence, we take only a small step in the
“direction” of γ̃ki .1 More precisely, for some choice of step
size η ∈ (0, 1], we set

γki
(
t, x(t)

)
= ûi(t)− P k

i (t)δx(t)− ηαk
i (t) , (7)

which corresponds to line 8 in Algorithm 1. Note that at
t = 0, δx(0) = 0 and γki

(
0, x(0)

)
= ûi(0)− ηαk

i (0). Thus,
taking η = 0, we have γki

(
t, x(t)

)
= ûi(t) (which may

be verified recursively). That is, when η = 0 we recover
the open-loop controls from the previous iterate, and hence
x(t) = x̂(t). Taking η = 1, we recover the LQ solution in
(6). Similar logic implies the following lemma.

Lemma 1: Suppose that trajectory ξ∗ is a fixed point of
Algorithm 1, with η 6= 0. Then, the converged affine terms
{α∗i (t)} must all be identically zero for all time.

In ILQR, it is important to perform a line-search over
step size η to ensure a sufficient decrease in cost at every

1We also note that, in practice, it is often helpful to “regularize” the
problem by adding scaled identity matrices εI to Qi and/or Rij .



iteration, and thereby improve convergence (e.g., [35]). In the
context of a noncooperative game, however, line-searching
to decrease “cost” does not make sense, as costs {Ji} may
conflict. For this reason, like other local methods in games
(e.g., [23]), our approach is not guaranteed to converge from
arbitrary initializations. In practice, however, we find that
our algorithm typically converges for a fixed, small step size
(e.g. η = 0.01). Heuristically decaying step size with each
iteration k or line-searching until ‖ξk − ξk−1‖ is smaller
than a threshold are also promising alternatives. Further
investigation of line-search methods in games is a rich topic
of future research.

Note: Although we have presented our algorithm in
continuous-time, in practice, we solve the coupled Riccati
equations analytically in discrete-time via dynamic program-
ming. Please refer to [12, Corollary 6.1] for a full derivation.
To discretize time at resolution ∆t, we employ Runge-Kutta
integration of nonlinear dynamics (1) with a zero-order hold
for control input over each time interval ∆t.

B. Characterizing fixed points

Suppose Algorithm 1 converges to a fixed point
(γ∗1 , . . . , γ

∗
N ). These strategies are the global Nash equi-

librium of a local LQ approximation of the original game
about the limiting operating point ξ∗. While it is tempting to
presume that such fixed points are also local Nash equilibria
of the original game, this is not always true because con-
verged strategies are only optimal for a LQ approximation
of the game at every time rather than the original game.
This approximation neglects higher order coupling effects
between each player’s running cost gi and other players’
inputs uj , j 6= i. These coupling effects arise in the game
setting but not in the optimal control setting, where ILQR
converges to local minima.

C. Computational complexity and runtime

The per-iteration computational complexity of our ap-
proach is comparable to that of ILQR, and scales modestly
with the number of players, N . Specifically, at each iteration,
we first linearize system dynamics about ξk. Presuming that
the state dimension n is larger than the control dimension mi

for each player, linearization requires computing O(n2) par-
tial derivatives at each time step (which also holds for ILQR).
We also quadraticize costs, which requires O(Nn2) partial
derivatives at each time step (compared to O(n2) for ILQR).
Finally, solving the coupled Riccati equations of the resulting
LQ game at each time step has complexity O(N3n3), which
may be verified by inspecting [12, Corollary 6.1] (for ILQR,
this complexity is O(n3)).

Total algorithmic complexity depends upon the number
of iterations, which we currently have no theory to bound.
However, empirical results are extremely promising. For
the three-player 14-state game described in Section V-B,
each iteration takes < 8 ms and the entire game can be
solved from a zero initialization (P 0

i (·) = 0, α0
i (·) = 0)

in < 0.25 s. Moreover, receding horizon invocations in a
hardware collision-avoidance test can be solved in < 50 ms

(Section V-C). All computation times are reported for single-
threaded operation on a 2017 MacBook Pro with a 2.8
GHz Intel Core i7 CPU. For reference, the iterative best
response scheme of [32] reports solving a receding horizon
two-player zero-sum racing game at 2 Hz, and the method
of [30] reportedly takes several minutes to converge for a
different two-player zero-sum example. The dynamics and
costs in both cases differ from those in Section V (or are not
clearly reported); nonetheless, the runtime of our approach
compares favorably.

V. EXAMPLES

In this section, we demonstrate our algorithm experimen-
tally in three-player noncooperative settings, both in software
simulation and hardware.2

A. Monte Carlo study

We begin by presenting a Monte Carlo study of the
convergence properties of Algorithm 1. As we shall see,
the solution to which Algorithm 1 converges depends upon
the initial strategy of each player, γ0i . For clarity, we study
this sensitivity in a game with simplified cost structure so
that differences in solution are more easily attributable to
coupling between players.

Concretely, we consider a three-player “hallway naviga-
tion” game with time horizon 10 s and discretization 0.1 s.
Here, three people wish to interchange positions in a narrow
hallway while maintaining at least 1 m clearance between
one another. We model each player i’s motion as:

ṗx,i = vi cos(θi) , θ̇i = ωi ,

ṗy,i = vi sin(θi) , v̇i = ai ,
(8)

where pi := (px,i, py,i) denotes player i’s position, θi
heading angle, vi speed, and input ui := (ωi, ai) yaw
rate and longitudinal acceleration. Concatenating all players’
states into a global state vector x := (px,i, py,i, θi, vi)

3
i=1, the

game has 12 state dimensions and six input dimensions.
We encode this problem with running costs gi (2) ex-

pressed as weighted sums of the following:

wall: 1{|py,i| > dhall}(|py,i| − dhall)
2 (9)

proximity: 1{‖pi − pj‖ < dprox}(dprox − ‖pi − pj‖)2 (10)

goal: 1{t > T − tgoal}‖pi − pgoal,i‖2 (11)

input: uTi Riiui (12)

Here, 1{·} is the indicator function, i.e., it takes the value 1
if the given condition holds, and 0 otherwise. dhall and dprox
denote threshold distances from hallway center and between
players, which we set to 0.75 and 1 m, respectively. The goal
cost is active only for the last tgoal seconds, and the goal
position is given by pgoal,i for each player i. Control inputs
are penalized quadratically, with Rii a diagonal matrix. The
hallway is too narrow for all players to cross simultaneously
without incurring a large proximity cost; hence, this proxim-
ity cost induces strong coupling between players’ strategies.

2Video summary available at https://youtu.be/KPEPk-QrkQ8.
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Fig. 2: Monte Carlo results for a three-player hallway navigation game.
(A1, B1, C1) Converged trajectories clustered by total Euclidean distance;
each cluster corresponds to a qualitatively distinct mode of interaction. (A2,
B2, C2) Costs for each player at each solver iteration. The shaded region
corresponds to one standard deviation. (D) Several converged trajectories did
not match a cluster (A-C). (E) Trajectories resulting from 500 random initial
strategies. (F) Histogram of iterations until state trajectory has converged.

Fig. 2 displays the results of our Monte Carlo study.
We seed Algorithm 1 with 500 random sinusoidal open-
loop initial strategies, which correspond to the trajectories
shown in Fig. 2(E). From each of these initializations, we
run Algorithm 1 for 100 iterations and cluster the resulting
trajectories by Euclidean distance. As shown in Fig. 2(A1,
B1, C1), these clusters correspond to plausible modes of
interaction; in each case, one or more players incur slightly
higher cost to make room for the others to pass. Beside each
of these clusters in Fig. 2(A2, B2, C2), we also report the
mean and standard deviation of each player’s cost at each
solver iteration. As shown in Fig. 2(F), state trajectories
converge within an `∞ tolerance of 0.01 in well under 100
iterations.

In these 500 random samples, only 6 did not converge and
had to be resampled, and 5 converged to trajectories which
were outliers from the clusters depicted in Fig. 2(A-C). These
outliers are shown in Fig. 2(D). We observe that, in these 5
cases, the players come within 0.5 m of one another.

B. Three-player intersection

Next, we consider a more complicated game intended to
model traffic at an intersection. As shown in Fig. 3, we
consider an intersection with two cars and one pedestrian,
all of which must cross paths to reach desired goal locations.
We use a time horizon of 5 s with discretization of 0.1 s, and
Algorithm 1 terminates in under 0.25 s.

0.0 ∑ t ∑ 0.8 0.8 ∑ t ∑ 1.5 1.5 ∑ t ∑ 5.0

1.5 ≤ t ≤ 5.0
0.0 ∑ t ∑ 0.8 0.8 ∑ t ∑ 1.5 1.5 ∑ t ∑ 5.0

0.8 ≤ t ≤ 1.5
0.0 ∑ t ∑ 0.8 0.8 ∑ t ∑ 1.5 1.5 ∑ t ∑ 5.0

Goals

LanesCar

Pedestrian

Crosswalk

0.0 ≤ t ≤ 0.8

Car

Fig. 3: Three-player intersection game. (Left) Green car seeks the lane
center and then swerves slightly to avoid the pedestrian. (Center) Red car
accelerates in front of the green car and slows slightly to allow the pedestrian
to pass. (Right) Red car swerves left to give pedestrian a wide berth.

We model the pedestrian’s dynamics as in (8) and each
cars i’s dynamics as follows:

ṗx,i = vi cos(θi) , θ̇i = vi tan(φi)/Li, φ̇i = ψi

ṗy,i = vi sin(θi) , v̇i = ai ,
(13)

where the state variables are as before (8) except for front
wheel angle φi. Li is the inter-axle distance, and input
ui := (ψi, ai) is the front wheel angular rate and longitudinal
acceleration, respectively. Together, the state of this game is
14-dimensional.

The running cost for each player i are specified as
weighted sums of (10)–(12), and the following:

lane center: d`(pi)2 (14)

lane boundary: 1{d`(pi) > dlane}(dlane − d`(pi))2 (15)

nominal speed: (vi − vref,i)
2 (16)

speed bounds: 1{vi > vi}(vi − vi)2
+ 1{vi < vi}(vi − vi)2 (17)

Here, dlane denotes the lane half-width, and d`(pi) :=
minp`∈` ‖p` − pi‖ measures player i’s distance to lane
centerline `. Speed vi is penalized quadratically away from
a fixed reference vref,i also outside limits vi and vi.

Fig. 3 shows a time-lapse of the converged solution iden-
tified by Algorithm 1. These strategies exhibit non-trivial co-
ordination among the players as they compete to reach their
goals efficiently while sharing responsibility for collision-
avoidance. Such competitive behavior would be difficult for
any single agent to recover from a decoupled, optimal control
formulation. Observe how, between 0 ≤ t ≤ 0.8 s (left), the
green car initially seeks the lane center to minimize its cost,
but then turns slightly to avoid the pedestrian (blue). Between
0.8 ≤ t ≤ 1.5 s (center), the red car turns right to pass in
front of the green car, and then slows and begins to turn left
to give the pedestrian time to cross. Finally (right), the red
car turns left to give the pedestrian a wide berth.

C. Receding horizon motion planning

Differential games are appropriate in a variety of ap-
plications including multi-agent modeling and coordinated
planning. Here we present a proof-of-concept for their use
in single-agent planning in a dynamic environment. In this
setting, a single robot operates amongst multiple other agents
whose true objectives are unknown. The robot models these
objectives and formulates the interaction as a differential
game. Then, crucially, the robot re-solves the differential
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Fig. 4: Time-lapse of a hardware demonstration of Algorithm 1. We model the interaction of a ground robot (blue triangle) and two humans (purple and
red triangles) using a differential game in which each agent wishes to reach a goal location while maintaining sufficient distance from other agents. Our
algorithm solves receding horizon instantiations of this game in real-time, and successfully plans and executes interactive collision-avoiding maneuvers.
Planned (and predicted) trajectories are shown in blue (robot), purple, and red (humans).

game along a receding time horizon to account for possible
deviations between the other agents’ decisions and those
which result from the game solution.

We implement Algorithm 1 in C++3 within the Robot
Operating System (ROS) framework, and evaluate it in a
real-time hardware test onboard a TurtleBot 2 ground robot,
in a motion capture room with two human participants.
The TurtleBot wishes to cross the room while maintaining
> 1 m clearance to the humans, and it models the humans
likewise. We model the TurtleBot dynamics as (8) and
humans likewise but with constant speed vi, i.e.:

ṗx,i = vi cos(θi) , ṗy,i = vi sin(θi) , θ̇i = ωi . (18)

We use a similar cost structure as in Section V-B, and
initialize Algorithm 1 with all agents’ strategies identically
zero (i.e., P 0

i (·), α0
i (·) ≡ 0). We re-solve the game in a 10 s

receding horizon with time discretization of 0.1 s, and warm-
start each successive receding horizon invocation with the
previous solution. Replanning every 0.25 s, Algorithm 1 re-
liably converges in under 50 ms. We gather state information
for all agents using a motion capture system. Fig. 4 shows
a time-lapse of a typical interaction.

Initially, in frame (a) Algorithm 1 identifies a set of
strategies which steer each agent to their respective goals
while maintaining a large separation. Of course, the human
participants do not actually follow these precise trajectories;
hence later receding horizon invocations converge to slightly
different strategies. In fact, between frames (c) and (d) the
red participant makes an unanticipated sharp right-hand turn,
which forces the (blue) robot to stay to the right of its
previous plan and then turn left in order to maintain sufficient
separation between itself and both humans. We note that
our assumed cost structure models all agents as wishing to
avoid collision. Thus, the resulting strategies may be less
conservative than those that would arise from a non-game-
theoretic motion planning approach.

3Code available at: github.com/HJReachability/ilqgames

VI. DISCUSSION

We have presented a novel algorithm for finding local
solutions in multi-player general-sum differential games. Our
approach is closely related to the iterative linear-quadratic
regulator (ILQR) [8], and offers a straightforward way for
optimal control practitioners to directly account for multi-
agent interactions via differential games. We performed a
Monte Carlo study which demonstrated the reliability of
our algorithm and its ability to identify complex interactive
strategies for multiple agents. These solutions display the
competitive behavior associated with local Nash equilibria,
although there are subtle differences. We also showcased our
method in a three-player 14-dimensional traffic example, and
tested it in real-time operation in a hardware robot navigation
scenario, following a receding time horizon.

There are several other approaches to identifying local
solutions in differential games, such as iterative best response
[23]. We have shown the computational efficiency of our
approach. However, quantitatively comparing the solutions
identified by different algorithms is challenging due to differ-
ences in equilibrium concept, information structure (feedback
vs. open loop), and implementation details. Furthermore, in
arbitrary general-sum games, different players may prefer
different equilibria. Studying the qualitative differences in
these equilibria is an important direction of future research.

Although our experiments show that our algorithm con-
verges reliably, we have no a priori theoretical guarantee of
convergence from arbitrary initializations. Future work will
seek a theoretical explanation of this empirical property.

ACKNOWLEDGMENTS

The authors would like to thank Andrew Packard for his
helpful insights on LQ games, as well as Forrest Laine, Chih-
Yuan Chiu, Somil Bansal, Jaime Fisac, Tyler Westenbroek,
and Eric Mazumdar for helpful discussions.

REFERENCES

[1] R. Bellman. Dynamic programming. Tech. rep. RAND
CORP SANTA MONICA CA, 1956.

github.com/HJReachability/ilqgames


[2] J. Ding, J. Sprinkle, S. S. Sastry, and C. J. Tomlin. “Reach-
ability calculations for automated aerial refueling”. 47th
Conference on Decision and Control (CDC). IEEE. 2008.

[3] S. L. Herbert*, M. Chen*, S. Han, S. Bansal, J. F. Fisac,
and C. J. Tomlin. “FaSTrack: a Modular Framework for Fast
and Guaranteed Safe Motion Planning”. 56th Conference on
Decision and Control (CDC) (2017).

[4] J. F. Fisac, E. Bronstein, E. Stefansson, D. Sadigh, S. S.
Sastry, and A. D. Dragan. “Hierarchical game-theoretic plan-
ning for autonomous vehicles”. International Conference on
Robotics and Automation (ICRA). IEEE. 2019.

[5] B. D. Ziebart, N. Ratliff, G. Gallagher, C. Mertz, K. Peterson,
J. A. Bagnell, M. Hebert, A. K. Dey, and S. Srinivasa.
“Planning-based prediction for pedestrians”. International
Conference on Intelligent Robots and Systems (IROS). IEEE.
2009.

[6] H. Bai, S. Cai, N. Ye, D. Hsu, and W. S. Lee. “Intention-
aware online POMDP planning for autonomous driving in a
crowd”. International Conference on Robotics and Automa-
tion (ICRA). IEEE. 2015.

[7] E. Schmerling, K. Leung, W. Vollprecht, and M. Pavone.
“Multimodal probabilistic model-based planning for human-
robot interaction”. 2018 IEEE International Conference on
Robotics and Automation (ICRA). IEEE. 2018.

[8] W. Li and E. Todorov. “Iterative linear quadratic regu-
lator design for nonlinear biological movement systems.”
ICINCO. 2004.

[9] J. Koenemann, A. Del Prete, Y. Tassa, E. Todorov, O.
Stasse, M. Bennewitz, and N. Mansard. “Whole-body model-
predictive control applied to the HRP-2 humanoid”. Interna-
tional Conference on Intelligent Robots and Systems (IROS).
IEEE. 2015.

[10] N. Kitaev, I. Mordatch, S. Patil, and P. Abbeel. “Physics-
based trajectory optimization for grasping in cluttered en-
vironments”. International Conference on Robotics and Au-
tomation (ICRA). IEEE. 2015.

[11] J. Chen, W. Zhan, and M. Tomizuka. “Constrained iterative
LQR for on-road autonomous driving motion planning”. In-
ternational Conference on Intelligent Transportation Systems
(ITSC). IEEE. 2017.
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