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Abstract— This paper proposes a framework for adaptively
learning a feedback linearization-based tracking controller for
an unknown system using discrete-time model-free policy-
gradient parameter update rules. The primary advantage of
the scheme over standard model-reference adaptive control
techniques is that it does not require the learned inverse model
to be invertible at all instances of time. This enables the use of
general function approximators to approximate the linearizing
controller for the system without having to worry about
singularities. However, the discrete-time and stochastic nature
of these algorithms precludes the direct application of standard
machinery from the adaptive control literature to provide
deterministic stability proofs for the system. Nevertheless, we
leverage these techniques alongside tools from the stochastic
approximation literature to demonstrate that with high proba-
bility the tracking and parameter errors concentrate near zero
when a certain persistence of excitation condition is satisfied.
A simulated example of a double pendulum demonstrates the
utility of the proposed theory. 1

I. INTRODUCTION

Many real-world control systems display nonlinear behav-
iors which are difficult to model, necessitating the use of con-
trol architectures which can adapt to the unknown dynamics
online while maintaining certificates of stability. There are
many successful model-based strategies for adaptively con-
structing controllers for uncertain systems [1–3], but these
methods often require the presence of a simple, reasonably
accurate parametric model of the system dynamics. Recently,
however, there has been a resurgence of interest in the use
of model-free reinforcement learning techniques to construct
feedback controllers without the need for a reliable dynamics
model [4–6]. As these methods begin to be deployed in
real world settings, a new theory is needed to understand
the behavior of these algorithms as they are integrated into
safety-critical control loops.

However, the majority of the theory for adaptive control is
stated in continuous-time [2], while reinforcement learning
algorithms are typically implemented and studied in discrete-
time settings [7, 8]. There have been several attempts to
define and study policy-gradient algorithms in continuous-
time [9, 10], yet many real-world systems have actuators
which can only be updated at a fixed maximum sampling
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frequency. Thus, we find it more natural and practically
applicable to unify these methods in the sampled-data setting.

Specifically, this paper addresses the model mismatch
issue by combining continuous-time adaptive control tech-
niques with discrete-time model-free reinforcement learning
algorithms to learn a feedback linearization-based tracking
controller for an unknown system, online. Unfortunately, it
is well-known that sampling can destroy the affine relation-
ship between system inputs and outputs which is usually
assumed and then exploited in the stability proofs from the
adaptive control literature [11]. To overcome this challenge,
we first ignore the effects of sampling and design an ide-
alized continuous-time behavior for the system’s tracking
and parameter error dynamics which employs a least-squares
gradient following update rule. In the sampled-data setting,
we then use an Euler approximation of the continuous-time
reward signal and implement a policy-gradient parameter
update rule to produce a noisy approximation to the ideal
continuous-time behavior. Our framework is closely related
to that of [12]; however, in this paper we address the problem
of online adaptation of the learned parameters whereas [12]
considers a fully offline setting.

Beyond naturally bridging continuous-time and sampled-
data settings, the primary advantage of our approach is that it
does not suffer from the “loss of controllability” phenomena
which is a core challenge in the model-reference adaptive
control literature [1, 13]. This issue arises when the parame-
terized estimate for the system’s decoupling matrix becomes
singular, in which case either the learned linearizing control
law or associated parameter update scheme may break down.
To circumvent this issue, projection-based parameter update
rules are used to keep the parameters in a region in which the
estimate for the decoupling matrix is known to be invertible.
In practice, the construction of these regions requires that
a simple parameterization of the system’s nonlinearities is
available [14]. In contrast, the model-free approach we
introduce does not suffer from singularities and can naturally
incorporate ‘universal’ function approximators such as radial
bases functions or bases of polynomials.

However, due to the non-deterministic nature of our
sampled-data control law and parameter update scheme,
the deterministic guarantees usually found in the adaptive
control literature do not apply here. Indeed, policy-gradient
parameter updates are known to suffer from high variances
[15]. Nevertheless, we demonstrate that when a standard
persistence of excitation condition is satisfied the tracking
and parameter errors of the system concentrate around the



origin with high probability even when the most basic policy-
gradient update rule is used. Our analysis technique is
derived from the adaptive control literature and the theory
of stochastic approximations [8, 16]. After developing the
basic theory we discuss how common heuristics from the
reinforcement learning literature can be used to reduce
the variance of the policy gradient updates. Due to space
constraints, we outline the analysis techniques we employ but
leave a number of proofs to a technical report [17]. Finally,
a simulation of a double pendulum demonstrates the utility
of the approach.

A. Related Work

A number of approaches have been proposed to avoid
the “loss of controllability” problem discussed above. One
approach is to perturb the estimated linearizing control law
to avoid singularities [13, 18, 19]. However, this method
never learns the exact linearizing controller during opera-
tion and hence sacrifices some tracking performance. Other
approaches avoid the need to invert the input-output dy-
namics by driving the system states to a sliding surface
[3]. Unfortunately, these methods require high-gain feedback
which may lead to undesirable effects such as actuator
saturation. Several model-free approaches similar to the one
we consider here have been proposed in the literature [20,
21], but these focus on actor-critic methods and, to the best
of our knowledge, do not provide any proofs of convergence.
Recently, non-parametric function approximators have been
been used to learn a linearizing controller [22, 23], but
these methods still require structural assumptions to avoid
singularities.

While our parameter-update scheme is most closely related
to the policy gradient literature, e.g., [7], we believe that
recent work in meta-learning [24, 25] is also similar to our
own work, at least in spirit. Meta-learning aims to learn
priors on the solution to a given machine learning problem,
and thereby speed up online fine tuning when presented
with a slightly different instance of the problem [26]. Meta-
learning is used in practice to apply reinforcement learning
algorithms in hardware settings [27, 28].

B. Preliminaries

Next, we fix mathematical notation and review some
definitions used extensively in the paper. Given a random
variable X , if they exist the expectation of X is denoted
E[X] and its variances is denoted by V ar(X). Our analysis
heavily relies on the notion of a sub-Gaussian distribution.
We say that a random variable X ∈ Rn is sub-Gaussian
if there exists a constant C > 0 such that for each
t ≥ 0 we have P{|x|2 ≥ t} ≤ 2 exp(− t2

C2 ). Informally, a
distribution is sub-Gaussian if it’s tail is dominated by the
tail of some Gaussian distribution. We endow the space of
sub-Gaussian distributions with the norm ‖·‖ψ2

defined by

‖X‖ψ2
= inf

{
t > 0: E[exp(

‖X‖22
t2 )] ≤ 2

}
. As an example,

if X = N (0, σ2I) is a zero-mean Gaussian distribution with
variance σ2I (with I the n-dimensional identity) then ‖X‖ψ2

is sub-Gaussian with norm ‖X‖ψ2
≤ Cσ, where the constant

C > 0 does not depend on σ2.

II. FEEDBACK LINEARIZATION

Throughout the paper we will focus on constructing output
tracking controllers for systems of the form

ẋ = f(x) + g(x)u (1)
y = h(x)

where x ∈ Rn is the state, u ∈ Rq is the input and y ∈ Rq is
the output. The mappings f : Rn → Rn, g : Rn → Rn×q and
h : Rn → Rq are each assumed to be smooth, and we assume
without loss of generality that the origin is an equilibrium
point of the undriven system, i.e., f(x) = 0. Throughout the
paper, we will also assume that state x and the output y can
both be measured.

A. Single-input single-output systems

We begin by introducing feedback linearization for single-
input, single-output (SISO) systems (i.e., q = 1). We begin
by examining the first time derivative of the output:

ẏ = Lfh(x) + Lgh(x) (2)

Here the terms Lfh(x) = d
dxh(x) · f(x) and Lgh(x) =

d
dxh(x) · g(x) are known as Lie derivatives [2]. In the case
that Lgh(x) 6= 0 for each x ∈ Rn, we can apply

u(x, v) =
1

Lgh(x)
(−Lfh(x) + v) , (3)

which exactly ‘cancels out’ the nonlinearities of the system
and enforces the linear relationship ẏ = v with v some
arbitrary, auxiliary input. However if the input does not affect
the first time derivative of the output—that is, if Lgh ≡ 0—
then the control law (3) will be undefined. In general, we
can differentiate y multiple times, until the input shows up
in one of the higher derivatives of the output. Assuming that
the input does not appear the first γ−1 times we differentiate
the output, the γ-th time derivative of y will be of the form

y(γ) = Lγfh(x) + LgL
γ−1
f h(x)u (4)

Here, Lγfh(x) and LgL
γ−1
f h(x) are higher order Lie deriva-

tives, and we direct the reader to [2, Chapter 9] for further
details. If LgL

γ−1
f h(x) 6= 0 for each x ∈ Rn then setting

u(x, v) =
1

LgL
γ−1
f h(x)

(
− Lγfh(x) + v

)
(5)

enforces the trivial linear relationship yγ = v. We refer to
γ as the relative degree of the nonlinear system, which is
simply the order of its input-output relationship.



B. Multiple-input multiple-output systems

Next, we consider square multiple-input, multiple-output
(MIMO) systems where q > 1. As in the SISO case, we
differentiate each of the output channels until at least one
input appears. Let γj be the number of times we need to
differentiate yj (the j-th entry of y) for at least one input to
appear. Combining the resulting expressions for each of the
outputs yields an input-output relationship of the form

y(γ) = b(x) +A(x)u (6)

where we have adopted the shorthand y(γ) =

[y
(γ1)
1 , . . . , y

(γq)
q ]T . Here, the matrix A(x) ∈ Rq×q is

known as the decoupling matrix and the vector b(x) ∈ Rq
is known as the drift term. If A(x) is non-singular on for
each x ∈ Rn then we observe that the control law

u(x, v) = A−1(x)(−b(x) + v) (7)

where v ∈ Rq yields the decoupled linear system

[y
(γ1)
1 , y

(γ2)
2 , . . . , y(γq)

q ]T = [v1, v2, . . . , vq]
T , (8)

where vk is the k-th entry of v and y
γj
j is the γj-th time

derivative of the j-th output. We refer to γ = (γ1, γ2, . . . , γq)
as the vector relative degree of the system, with |γ| =

∑
i γi

the total relative degree of all dimensions. The decoupled
dynamics (8) can be compactly represented with the LTI
system

ξ̇r = Aξr +Bvr (9)

which we will hereafter refer to as the reference model.
Here, A ∈ R|γ|×|γ| and B ∈ R|γ|×q is con-
structed so that BTB = Iq×q , where Iq×q is the q-
dimensional identity matrix. Note that (9) collects ξr =
(y1, ẏ1, . . . , . . . , y

γ1−1
1 , . . . , yq, . . . , y

γq−1
q ). It can be shown

[2, Chapter 9] that there exists a change of coordinates
x → (ξ, η) such that in the new coordinates and after
application of the linearizing control law the dynamics of
the system are of the form

ξ̇ = Aξ +Bv (10)
η̇ = q(ξ, η) + p(ξ, η)v.

That is, the ξ ∈ R|γ| coordinates represent the portion of the
system that has been linearized while the η ∈ Rn−|γ| coor-
dinates represent the remaining coordinates of the nonlinear
system. The undriven dynamics

η̇ = q(ξ, η) (11)

are referred to as the zero dynamics. Conditions which ensure
that the η coordinates remain bounded during operation will
be discussed below.

C. Inversion & exact tracking for min-phase MIMO systems

Let us assume that we are given a desired reference
signal yd(·) =

(
y1,d(·), . . . , yq,d(·)

)
. Our goal is to construct

a tracking controller for the nonlinear system using the
linearizing controller (7), along with a linear controller
designed for the reference model (9) which makes use of both

feedback terms. We will assume that the first γj derivatives
of yj,d(·) are well defined, and assume that the signal(
yj,d(·), y(1)

j,d (·), . . . , y(γq)
q,d (·)

)
can be bounded uniformly.

For compactness of notation, we will collect

y
(γ)
d (·) =

(
y

(γ1)
1,d (·), y(γ2)

2,d (·), . . . , y(γq)
q,d (·)

)
ξd(·) =

(
y1,d(·), . . . , y(γ1−1)

1,d (·), . . . , yq,d(·), . . . , y
(γq−1)
q,d (·)).

Here, ξ(·) is used to capture the desired trajectory of the
linear reference model, and y

(γ)
d (·) will be used in a feed-

forward term in the tracking controller. To construct the
feedback term, we define the error

e(·) = ξ(·)− ξd(·) (12)

where ξ(·) is the actual trajectory of the linearized coordi-
nates as in (10). Altogether, the tracking controller for the
system is then given by

u = A−1(x)
(
− b(x) + y

(γ)
d +Ke

)
(13)

where K ∈ Rq×|γ| is a linear feedback matrix designed so
that (A + BK) us Hurwitz. Under the application of this
control law the closed loop error dynamics become

ė = (A+BK)e (14)

and it becomes apparent that e → 0 exponentially quickly.
However, while the tracking error decays exponentially, the
η coordinates may be come unbounded during operation, in
which case the linearizing control law will break down. One
sufficient condition for η to remain bounded is for the zero
dynamics to be globally exponentially stable and for ξd(·)
and yd(·) to remain bounded [1, Chapter 9]. When the zero
dynamics satiecfy this condition we say nonlinear system is
exponentially minimum phase.

III. ADAPTIVE CONTROL

From here on, we will aim to learn a feedback
linearization-based tracking controller for the unknown plant

ẋp = fp(xp) + gp(xp)up (15)
yp = hp(xp)

in an adaptive fashion. We assume that we have access to a
an approximate dynamics model for the plant

ẋm = fm(xm) + gm(xm)um (16)
ym = hm(xm), (17)

which incorporates any prior information available about the
plant. It is assumed that the state (xm and xp) for both
systems belongs to Rn, that the inputs and outputs for both
systems belong to Rq , and that each of the mappings in (15)
and (16) are smooth. We make the following assumption
about the model and plant:

Assumption 1: The plant and model have the same well-
defined relative degree γ = (γ1, γ2, . . . , γq) on all of Rn.

Assumption 2: The model and plant are both exponen-
tially minimum phase.



With these assumptions in place, we know that there
are globally-defined linearizing controllers for the plant and
model, which respectively take the following form:

up(x, v) = βp(x) + αp(x)v

um(x, v) = βm(x) + αm(x)v

While um can be calculated using the model dynamics and
the procedures outlined in the previous section, the terms
comprising up are unknown to us. However, we do know
that they may be expressed as

βp(x) = βm(x) + ∆b(x)

αp(x) = αm(x) + ∆α(x)

where ∆β : Rn → Rq and ∆α : Rn → Rq×q are unknown
but continuous functions. Thus we construct an estimate for
up of the form

û(θ, x, v) =
(
βm(x) + βθ1

)
+
(
αm(x) + αθ2(x)

)
v

where βθ1 : Rn → Rq is a parameterized estimate for ∆β,
and αθ2 : Rn → Rq×q is a parameterized estimate for ∆α.
The parameters θ1 = (θ1

1, θ
2
1, . . . , θ

K1
1 ) ∈ RK1 and θ2 =

(θ1
2, θ

2
2, . . . , θ

K2
2 ) ∈ RK2 are to be learned during online

operation of the plant. Our theoretical results will assume
that the estimates are of the form

βθ1(x) =

K1∑
k=1

θk1βk(x) αθ2(x) =

K2∑
k=1

θk2αk(x) (18)

where {βk}K1

k=1 and {αk}K2

k=1 are linearly independent bases
of functions, such as polynomials or radial basis functions.

A. Idealized continuous-time behavior

We now introduce a continuous-time update rule for
the parameters of the learned linearizing controller which
assumes that we know the functional form of the nonlin-
earities of the system. In Section III-B, we demonstrate
how to approximate this ideal behavior in the sampled data
setting using a policy gradient update rule which requires no
information about the structure of the plant’s nonlinearities.

We begin by assuming that there exists a set of “true”
parameters θ∗ = (θ∗1 , θ

∗
2) ∈ RK1+K2 for the plant so that for

each x ∈ Rn and v ∈ Rq we have û(θ∗, x, v) ≡ up(x, v).
In this case, we can write our parameter estimation error as
φ = (θ1 − θ∗1 , θ2 − θ∗2) so that θ = φ+ θ∗.

With the gain matrix K constructed as in Section II-
C, an estimate for the feedback linearization-based tracking
controller is of the form

u = û(θ, x, yγd +Ke). (19)

When this control law is applied to the system the closed-
loop error dynamics take the form

ė = (A+BK)e+BW (x, yγd , e)φ (20)

where W is a complicated function of x, yγd and e which
contains terms involving bp(x), Ap(x), βm(x), αm(x), βp(x)
and αp(x). The exact form of this function can be found in

the technical report. The term BWφ captures the effects that
the parameter estimation error φ has on the closed loop error
dynamics. As we have done here, we will frequently drop
the arguments of W to simplify notation. We will also write
W (t) for W (x(t), yγd (t), e(t)) when we wish to emphasize
the dependence of the function on time.

Ideally, we would like to drive BWφ → 0 as t → ∞
so that we obtain the desired closed-loop error dynamics
(14). Recalling from Section II-B that the reference model
is designed such that BTB = I , this suggests applying the
least-squares cost signal

R(t) = ‖BWφ‖22 = ‖Wφ‖22 (21)

and following the negative gradient of the cost with the
following update rule:

φ̇ = −WTWφ. (22)

Least-squares gradient-following algorithms of this sort are
well studied in the adaptive control literature [1, Chapter
2]. Since we have θ̇ = φ̇, this suggests that the parameters
should also be updated according to θ̇ = −WTWφ. Alto-
gether, we can represent the tracking and parameter error
dynamics with the linear time-varying system[

ė

φ̇

]
=

[
A+BK BW (t)

0 −WT (t)W (t)

]
︸ ︷︷ ︸

A(t)

[
e
φ

]
. (23)

Letting X = (eT , φT )T , the solution to this system is given
by

X(t) = Φ(t, 0)X(0) (24)

where for each t1, t2 ∈ Rn the state transition matrix
Φ(t1, t2) is the solution to the matrix differential equation
d
dtΦ(t, t2) = A(t)Φ(t, t2) with intial condition Φ(t2, t2) =
I , where I is the identity matrix of appropriate dimension.
From the adaptive control literature, it is well known that
if W (t)TW (T ) is “persistently exciting” in the sense that
there exists δ > 0 such that for each t0 ≥ 0

c1I >

∫ t0+δ

t0

WT (t)W (t)dt > c2I (25)

for some c1, c2 > 0, then the time varying system (23) is
exponentially stable, if W (t) also remains bounded. Intu-
itively, this condition simply ensures that the regressor term
WTW is “rich enough” during the learning process to drive
φ→ 0 exponentially quickly. Observing (20) we also see that
if φ→ 0 exponentially quickly then e→ 0 exponentially as
well. We formalize this point with the following Lemma:

Lemma 1: Let the persistence of excitation condition (25)
hold and assume that there exists C > 0 such that ‖W (t)‖ <
C for each t ∈ R. Then there exists M > 0 and ζ > 0 such
that for each t1, t2 ∈ R

‖Φ(t1, t2)‖ ≤Me−ζ(t1−t2) (26)

with Φ(t1, t2) defined as above.



Proof of this result can be found in the technical report,
but variations of this result can be found in standard adaptive
control texts [1]. Unfortunately, we do not know the terms in
(22) since we don’t know φ or W so this update rule cannot
be directly implemented. In the next section we introduce
a model-free update rule for the parameters of the learned
controller which approximates the continuous update (22)
without requiring direct knowledge of W or φ.

B. Sampled-data parameter updates with policy gradients
Hereafter, we will assume that the control supplied to the

plant can only be updated every ∆t seconds. While this
setting provides a more realistic model for many robotic
systems, sampling has the unfortunate effect of destroying
the affine relationship between the plant’s inputs and outputs
[11] which was key to the continuous-time design tech-
niques discussed above. Nevertheless, we now introduce a
framework for approximately matching the ideal tracking and
parameter error dynamics introduced in the previous section
in the sampled-data setting using an Euler discretization of
the continuous-time reward (21) and a policy-gradient based
parameter update rule.

Before introducing our sampled-data control law and
adaptation scheme, we first fix notation and discuss a few
key assumptions our analysis will employ. To begin we let
tk = k∆t for each k ∈ N denote the sampling times for
the system. Letting x(·) denote the trajectory of the plant,
we let xk = x(tk) ∈ Rn denote the state of the plant at
the k-th sample. Similarly, we let ξ(·) denote the trajectory
of the outputs and their derivatives as in (10), and we set
ξk = ξ(tk) ∈ R|γ| (not to be confused with the k-th entry of
ξ). Next we let uk ∈ Rm denote the input applied to the plant
on the interval [tk, tk+1). The parameters for our learned
controller will be updated only at the sampling times, and we
let θk ∈ RK denote the value of the parameters on [tk, tk+1).
We again let yd(·), ξd(·) and y

(γ)
d (·) denote the desired

trajectory for the outputs and their appropriate derivatives,
and let ξd,k = ξd(tk) ∈ R|γ| and y(γ)

d,k = y
(γ)
d (tk) ∈ Rq , and

ek = (ξk− ξd,k) ∈ R|γ|. We make the following assumption
about the desired output signals and their derivatives:

Assumption 3: The signal yd(·) is continuous and uni-
formly bounded. Furthermore, for each j = 1, . . . , q the
derivatives {ẏj,d(·), ÿj,d(·), . . . , y

(γj)
j,d (·)} are also continuous

and uniformly bounded.
Remark 1: Typical convergence proofs in the continuous-

time adaptive control literature generally only require that
(yj,d(·), ẏ1,d(·), . . . , y

γj−1
j,d (·)) be continuous and bounded,

but these methods also assume that the input to the plant
can be updated continuously. In the sampled data setting,
we require the continuity of yγjj,d(·) to ensure that it does not
vary too much within a given sampling period.

After sampling the discrete-time tracking error dynamics
obey a difference equation of the form

ek+1 = Hk(xk, ek, uk) (27)

where Hk : Rn×R|γ|×Rq → R|γ| is obtained by integrating
the dynamics of the nonlinear system and reference trajectory

over [tk, tk+1). Generally, Hk will no longer be affine in the
input. However, the relationship is approximately affine for
small values of ∆t. Indeed, with Assumptions 3 and 5 in
place, if we apply the control law

uk = u(θk, xk, y
γ
d,k +Kek), (28)

then an Euler discretization of the continuous time error
dynamics (20) yields

ek+1 = ek + ∆t(A+BK)ek + ∆tBWkφk +O(∆t2) (29)

where we have set Wk = W (xk, ξk, y
γ
d,k + Kek). Thus,

letting Ā = (I + ∆t(A + BK)), for small ∆t > 0 the
continuous-time cost is well approximated by

R(tk) = ‖Wkφk‖22 ≈
∥∥∥∥ek+1 − Āek

∆t

∥∥∥∥2

2

: = Rk(xk, ek, uk),

(30)
where we note that ek and ek+1 are both quantities which
can be measured by numerically differentiating the outputs
from the plant. Intuitively, the sampled-data cost Rk provides
a measure for how well the control uk matches the desired
change in the tracking error (20) over the interval [tk, tk+1).

Next, we add probing noise to the control law (28) to
ensure that the input is sufficiently exciting and to enable the
use of policy-gradient methods for estimating the gradient of
the discrete-time cost signal. In particular, we will draw the
input according as uk ∼ πk(·|θk, xk, ek), where

πk(·|θk, xk, ek) = û

(
θk, xk, y

γ
d,k +K(ξd,k − ξk)

)
+Wk

(31)
and Wk = N (0, σ2I) is additive zero-mean Gaussian noise.
Methods for selecting the variance-scaling term σ2 will be
discussed below, however for now it is sufficient to assume
that σ2 is bounded.

With the addition of the random noise we now define

Jk(θk) = Euk∼πk(θk,xk,ek)Rk(xk, ek, uk), (32)

noting that it is also common for policy gradient methods
to use an expected “cost-to-go” as the objective. Regardless,
using the policy-gradient theorem [29], the gradient of Jk
can be written as

∇θkJk(θk) = EπkR(xk, ξk, uk) ·
∇θk logP{πk(uk|θk, xk, ek)}

where the expectation accounts for randomness due to the
input uk = πk(uk|θk, xk, ek).

Moreover, a noisy, unbiased estimate of ∇Jk is given by

Ĵk = R(xk, ξk, uk)∇θk log
(
P{π(uk|θk, θk, xk, ek)}

)
(33)

where uk = πk and is the actual input applied to the
plant over the k-th time interval. Recall that Rk(xk, ek, uk)
can be directly calculated using ek, ek+1 and (30), and
∇θkP{log(π(uk|θk, sk))} can also be computed since the
derivatives of û (and thus of logP{πk}) are known to us.
Thus, Ĵk can be computed using values that we have assumed



we can measure. However, since the input uk is random, the
gradient estimate is drawn according to

Ĵk ∼ ∆Ĵk(·|θk, xk, ek) (34)

where the random variable is constructed using the relation-
ship (33). Using our estimate of the gradient for the discrete-
time reward we propose the following noisy update rule for
the parameters of our learned controller:

θk+1 = θk −∆tĴk (35)

Putting it all together, the sampled-data stochastic version of
our error dynamics becomes

ek+1 = ek +Hk(xk, ek, uk) (36)

φk+1 = φk −∆tĴk

where uk = πk and Ĵk is calculated as in (33). We make the
following Assumptions about this stochastic process:

Assumption 4: There exists a constant C > 0 such that
supk≥0 ‖wk‖ < C almost surely.

Assumption 5: There exists a constant C > 0 such
supk≥0 ‖xk‖ < C and supk≥0 ‖θk‖ < C almost surely.

Assumption 4 ensures that the additive noise does not drive
the state to be unbounded during a single sampling interval,
while Assumption 5 ensures that the gradient estimate does
not become undefined during the learning process. These
important technical assumptions are common in the theory
of stochastic approximations [8], and allow us to characterize
the estimator for the gradient as follows:

Lemma 2: Let Assumptions 3-5 hold. Then
∆Ĵk(·|θk, xk, ek) is a sub-Gaussian distribution where

E[Ĵk] = WT
k Wkφk +O(∆t(1 + σ + σ2)) (37)

and ∥∥∥Ĵk(·|θk, xk, ek)
∥∥∥
ψ2

= O

(
1

σ

)
. (38)

The Lemma demonstrates a trade-off between the bias and
variance of the gradient estimate that has been observed in
the reinforcement learning literature [15, 30]. Specifically,
the bias of the gradient estimate decreases as σ2 → 0 but this
causes the gradient of the estimator to blow up, as indicated
by the increasing sub-Gaussian norm. However, the bias of
the gradient estimate has a term which is O(∆t) which does
not depend on the amount of noise added to the system.
This term comes from the fact that we have resorted to
using a finite difference approximation (30) to approximate
the gradient of the continuous-time reward in the sampled
data setting. Due to this inherent bias, little is gained by
decreasing σ2 past a certain point. Next, we analyze the
overall behavior of (36).

C. Convergence analysis

The main idea behind our analysis is to model our
sampled-data error dynamics (36) as a perturbation to the
idealized continuous-time error dynamics (23), as is com-
monly done in the stochastic approximation literature [8].
Under the assumption that WTW is persistently exciting, the
nominal continuous time dynamics are exponentially stable
and we observe that the total perturbation accumulated over
each sampling interval decays exponentially as time goes on.
Due to space constraints, we outline the main points of the
analysis here but leave the details to the technichal report.

Our analysis makes use of the piecewise-linear curve
φ̄ : R → RK which is constructed by interpolating between
φk and φk+1 along the interval [tk, tk+1). That is, we define

φ̄(t) =

(
tk+1 − t

∆t

)
φk +

(
t− tk

∆t

)
φk+1 if t ∈ [tk, tk+1).

Combining the tracking and interpolated tracking error into
the state X = (eT , φT )T we may write

d

dt
X(t) = A(t)X(t) + δ(t) (39)

where for each t ∈ R the dynamics matrix A(t) constructed
as in (23) and the disturbance δ : R→ R|γ|+K captures the
deviation from the idealized continuous dynamics caused at
each instance of time due the sampling, additive noise, and
the process of interpolating the parameter error. Again letting
Φ(t, τ) denote the solution to d

dtΦ(t, τ) = A(t)Φ(t, τ) with
initial condition Φ(s, s) = I , for each t, s ∈ R we have that

X(t) = Φ(t, 0)X(0) +

∫ t

0

Φ(t, τ)δ(τ)dτ (40)

Now, if we let Xk = X(tk) for each k ∈ N we can instead
write

Xk = Φ(tk, 0)X0 +

k−1∑
i=1

Φ(tk, ti+1)

∫ ti+1

ti

Φ(ti+1, τ)δ(τ)dτ︸ ︷︷ ︸
δk

,

(41)
where the term δk ∈ R|γ|+K is the total disturbance accu-
mulated over the interval [tk, tk+1). We separate the effects
the distubance has on the tracking and error dynamics by
letting δek ∈ R|γ| denote the first |γ| elements of δk and
letting δφk ∈ RK denote the remaining entries. On the interval
[tk, tk+1) the disturbance δ(t) can be written as a function
of uk, xk and ek. Since uk is a random function of xk, for
fixed xk, ek and θk, the two elements of δk are distributed
according to

δek ∼ ∆e
k(·|θk, xk, ek) and δφk ∼ ∆φ

k(·|θk.xk, ek). (42)

These random variables are constructed by integrating the
distrubance over [tk, tk+1) and an explicit representation of
these variable can be found in the technical report, where
proof of the following result can also be found.

Lemma 3: Let Assumptions 3-5 hold. Then
∆e
k(·|θk, xk, ek) and ∆φ

k(·|θk, xk, ek) are sub-Gaussian



random variables where

‖E[∆e
k(·|θk, xk, ek)]‖2 = O(∆t2(1 + σ)) (43)

‖E[∆φ
k(·|θk, xk, ek)]‖2 = O(∆t2(1 + σ + σ2)) (44)

‖∆e
k(·|θk, xk, ek)‖ψ2 = O(∆tσ) (45)

‖∆φ
k(·|θk, xk, ek)‖ψ2

= O

(
∆t

σ

)
. (46)

Next, for each k ∈ N we put εek = E[∆e
k(·|θk, xk, ek)] ∈

R|γ|, εφk = E[∆φ
k(·|θk, xk, ek)] ∈ RK and then define the

zero-mean random variables Me
k = ∆e

k(·|θk, xk, ek) − εek
and Mφ

k = ∆φ
k(·|θk, xk, ek)− εφk . Our overall discrete-time

process can then be written as

Xk = Φ(tk, 0)X0 +

k−1∑
i=0

Φ(tk, ti+1)(εi +Mi). (47)

where εk ∈ R|γ|+K is constructed by stacking εek on top of
εφk and Mk is constructed by stacking Me

k on top of Mφ
k .

Now if we assume that WTW is persistently exciting, then
for each k1, k2 ∈ N we have

‖Φ(tk1 , tk2)‖ ≤Me−ζ∆t(k1−k2) = Mρk1−k2 (48)

where M > 0 and ζ > 0 are as in Lemma 1 and we have
put ρ = e−ζ∆t < 1. Thus, under this assumption we may
use the triangle inequality to bound

|Xk| ≤M

(
ρk|X0|+

k−1∑
i=0

ρk−i|εk|+ |
k−1∑
i=0

ρk−iMk|

)
.

(49)
Thus, when WTW is persistently exciting we see that the
effects of the disturbance accumulated at each time step
decays exponentially as time goes on, along with the effects
of the initial tracking and parameter error. A full proof for
the following Theorem is given in the technichal report, but
the main idea is to use properties of geometric series to
bound

∑k−1
i=0 ρ

k−i|εk| over time and to use the concentration
inequality from [16, Theorem 2.6.3] to bound the deviation
of |

∑k−1
i=0 ρ

k−iMk|.
Theorem 1: Let Assumptions 3-5 hold. Further assume

that WTW is persistently exciting and let M > 0 and
ζ > 0 be defined as in Lemma 1. Then there exists numerical
constants C1 > 0 and C2 > 0 such that

|E[Xk]| ≤Mρk|X0|+MC1
∆t(1 + σ + σ2)

ζ
(50)

and for each λ > 0 with probability 1− λ we have

|Xk − E[Xk]| ≤ C2M

√
∆t ln

(
2
λ

)
ζσ2

(51)

Despite the high variance of the simple policy gradient
parameter update analyzed so far, the Theorem demonstrates
that with high probability our tracking and parameter errors
concentrate around the origin. As ∆t decreases, the bias

introduced by the sampling and additive noise diminish, as
does the radius of our high-probability bound. These bounds
also become tighter as the exponential rate of decay for the
idealized continuous time dynamics increases. The Theorem
again displays the trade-off between the bias and variance of
the learning scheme observed in Section 3. However, here
we still observe in equation (50) that the bias introduced by
the noise is relatively small, meaning σ2 does not have to be
made prohibitively small so as to degrade the bound in (51).

D. Variance Reduction via Baslines

It is common for policy gradients to be implemented with
a baseline [31]. In this case, the gradient estimator in (33)
may become biased, though it often has lower variance [7,
32]. The expression with a baseline is

Ĵk =
(
Rk(xk, ξk, uk)− Sk(xk, ξk, uk)

)
·

∇θk log
(
P{π(uk|θk, θk, xk, ek)}

)
, (52)

where Sk(xk, ξk, uk) is an estimate of R(xk, ξk, uk). If Sk
does not depend on uk then the addition of the baseline does
not add any bias to the gradient estimate [7]. For example,
in our numerical example below we use a simple sum-of-
past-rewards baseline by setting Sk =

∑k−1
i=0 Ri, where Ri

is the i-th reward recorded. We consider it a matter of future
work to rigorously study the effects of this an other common
baselines from the reinforcement learned literature within the
theoretical framework we have developed.

IV. NUMERICAL EXAMPLE

Our numerical example examines the application of our
method to the double pendulum depicted in Figure 1 (a),
whose dynamics can be found in [33]. With a slight abuse of
notation, the system has generalized coordinates q = (θ1, θ2)
which represent the angles the two arms make with the
vertical. Letting x = (x1, x2, x3, x4) = (q, q̇), the system
can be represented with a state-space model of the form (1)
where the angles of the two joints are chosen as outputs. It
can be shown that the vector relative degree is (2, 2), so the
system can be completely linearized by state feedback.

The dynamics of the system depend on the parameters m1,
m2, l1, l2 where mi is the mass of the i-th link and li its
length. For the purposes of our simulation, we set the true
parameters for the plant to be m1 = m2 = l1 = l2 = 1.
However, to set-up the learning problem, we assume that we
have inaccurate measurements for each of these parameters,
namely, m̂1 = m̂2 = l̂1 = l̂2 = 1.3. That is, each estimated
parameter is scales to 1.3 times its true value. Our nominal
model-based linearizing controller um is constructed by
computing the linearizing controller for the dynamics model
which corresponds to the inaccurate parameter estimates.
The learned component of the controller is then constructed
by using radial basis functions to populate the entries of
{βk}K1

k=1 and {αk}k2k=1. In total, 250 radial basis functions
were used.

For the online leaning problem we set the sampling
interval to be ∆t = 0.05 seconds and set the level of



Fig. 1: (a) Schematic representation of the double pendulum model used in the simulations study. (b) The norm of the tracking error for the adaptive
learning scheme (c) The tracking error for the nominal model-based controller with no learning.

probing noise at σ2 = 0.1. The reward was regularized
using an average sum-of-rewards baseline as described in III-
D. The reference trajectory for each of the output channels
were constructed by summing together sinusoidal functions
whose frequencies are non-integer multiples of each other to
ensure that the entire region of operation was explored. The
feedback gain matrix K ∈ R2×4 was designed so that each
of the eigenvalues of (A + BK) are equal to −1.5, where
A ∈ R4×4 and B ∈ R4×2 are the appropriate matricies in
the reference model for the system.

Figure 1 (b) shows the norm of the tracking error of the
learning scheme over time while Figure 1 (c) shows the norm
of the tracking error for the nominal model-based controller
with no learning. Note that the learning-based approach is
able to steadily reduce the tracking error over time while
keeping the system stable.

V. CONCLUSION

This paper developed an adaptive framework which em-
ploys model-free policy-gradient parameter update rules to
construct a feedback-linearization based tracking controller
for systems with unknown dynamics. We combined analysis
techniques from the adaptive control literature and theory of
stochastic approximations to provide high-confidence track-
ing guarantees for the closed loops system, and demonstrated
the utility of the framework through a simulation experiment.
Beyond the immediate utility of the proposed framework, we
believe the analysis tools we developed provide a foundation
for studying the use of reinforcement learning algorithms for
online adaptation.
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